x, y, z

Поиск > Публикации: числа

Поля поиска:




Запрос:
Номер раздела:
Сортировать:
Публикации: 42
|1|2|3| >>>
ПубликацияРазделКомм.
Ричард Фейнман
Он берет счеты: жжжжжжжжжжжжжжжж — «Да», — соглашается он. И тут до меня доходит: он не знает чисел. Когда у тебя есть счеты, не нужно запоминать множество арифметических комбинаций; нужно просто научится щелкать костяшками вверх-вниз. Нет необходимости запоминать, что 9 + 7 = 16; ты просто знаешь, что когда прибавляешь 9, то нужно передвинуть десятичную костяшку вверх, а единичную — вниз. Поэтому основные арифметические действия мы выполняем медленнее, зато мы знаем числа.
Математика 0 Ø
Алексей Савватеев, Алексей Семихатов
Вопрос науки
Зачем математики придумывают всё новые неразрешимые задачи? Зачем нужна современная математика? Среди ученых нет ни одного, кто разбирался бы во всех областях современных математических наук. А математики придумывают все новые и новые неразрешимые задачи, и потом десятилетиями бьются над ними. Зачем все это? И какое отношение математика имеет к нашей жизни? Гость программы доктор физико-математических наук Алексей Савватеев. Беседует Алексей Семихатов.
Математика ≫ Видео 0 Ø
Почему минус один умножить на минус один равно плюс один? Почему минус один умножить на плюс один равно минус один? Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Мы сначала постараемся понять это, исходя из истории развития арифметики, а потом ответим на этот вопрос с точки зрения современной математики.
Математика 0 Ø
Владлен Тиморин
Математик Владлен Тиморин о преимуществах комплексных чисел, кватернионах Гамильтона, восьмимерных числах Кэли и о разнообразии чисел в геометрии.
Математика ≫ Видео 0 Ø
Максим Казарян
Непрерывная дробь — это выражение вида a0+(1/(a1+1/(a2+(1/(a3+… ))))), (конечное или бесконечное), где ai — натуральные числа. Выражения такого вида выглядят довольно забавными, но важность их заключается вовсе не в этом, а в том, что теория непрерывных дробей — это теория наилучших приближений иррациональных чисел рациональными. Например приближениие π≈22/7 точнее, чем более привычное 3,14=314/100, несмотря на то, что у первого знаменатель гораздо меньше второго. Каким образом это происходит, будет объяснено на занятиях.
Математика ≫ Видео 0 Ø
Александр Буфетов
Традиция отмечать неофициальный день числа Пи зародилась в Соединенных Штатах почти 30 лет назад, когда известный американский физик Ларри Шоу обратил внимание на то, что 14 марта совпадает с первыми тремя цифрами знаменитой "архимедовой константы" — 3,14. На следующий год, с подачи Шоу, в этот день посетителей музея начали угощать пирогами (из-за сходного звучания слов "пирог" и "Пи" английском языке "pi" — "pie"), после чего к ежегодному отмечанию этой даты постепенно присоединились физики и математики со всего мира.
Математика ≫ Видео 0 Ø
Ученые из Оксфордского университета заявили, что самым ранним известным употреблением цифры 0 для обозначения отсутствия значения разряда (как в числе 101) следует считать текст индийского манускрипта Бахшали.
Математика 0 Ø
Владимир Арнольд
Ж. Л. Лагранж доказал, что последовательность неполных частных (начиная с некоторого места) периодична, если и только если число x — квадратичная иррациональность. Р. О. Кузьмин доказал, что в последовательности неполных частных почти любого вещественного числа доля d_m равных m неполных частных одинакова (для типичных вещественных чисел). Доля d_m убывает при m→∞ как 1/m^2 и её величина была предсказана Гауссом (ничего не доказавшим). В. И. Арнольда высказал (лет 20 назад) гипотезу, что статистика Гаусса–Кузьмина d_m выполняется также для периодов цепных дробей корней квадратных уравнений x^2+px+q=0 (с целыми p и q): если выписать вместе неполные частные, составляющие периоды всех цепных дробей корней таких уравнений с p^2+q^2≤R^2, то доля неполного частного m среди них будет стремиться к числу d_m при R→∞. В. А. Быковский со своими хабаровскими учениками доказали недавно эту давнюю гипотезу. Несмотря на это, вопрос о статистике не букв, а составленных из них слов [a_k+1, a_k+2,…, a_k+T], которые являются периодами цепных дробей каких-либо корней x уравнений x^2+px+q=0 далеко не решён.
Математика ≫ Видео 0 Ø
Василий Писпанен
Кто не играл в детстве в игру "назови самое большое число"? Миллионы, триллионы и прочие "-оны" представить в уме уже сложно, но мы с вами попробуем разобрать "мастодонта" в математике — число Грэма.
Математика ≫ Видео 0 Ø
Жак Сезиано
За два тысячелетия произошло три важных расширения числовой области. Во-первых, около 450 г. до н.э. учёные школы Пифагора доказали существование иррациональных чисел. Их начальной целью было числовое выражение диагонали единичного квадрата. Во-вторых, в XIII-XV веках европейские учёные, решая системы линейных уравнений, допустили возможность одного отрицательного решения. И, в-третьих, в 1572 г. итальянский алгебраист Рафаэль Бомбелли использовал комплексные числа для получения действительного решения некоего кубического уравнения.
Математика ≫ Видео 0 Ø
Михаил Цфасман
У древних греков было две никак не связанных между собой науки — арифметика и геометрия. В новое время математики осознали, что геометрические методы можно применять к арифметике, и наоборот. Двадцатый век пошёл много дальше. Сегодня целые числа для нас — геометрический объект ничуть не в меньшей степени, чем окружность. Осознание этого проходит через алгебру и алгебраическую геометрию. На этом пути была доказана великая теорема Ферма, но до неё мы, скорее всего в этих лекциях не дойдем. А впереди маячит гипотеза Римана, до которой не дойдём точно…
Математика ≫ Видео 0 Ø
Алексей Белов
Всем говорят в школе, что число π иррационально и даже — трансцендентно, т. е. не является корнем многочлена с целыми коэффициентами. Имеется изящное и вполне элементарное доказательство Эрмита иррациональности числа π (требующее только знания интегрирования по частям — понимания как вычислить интеграл ∫ x^k sin(x)dx в пределах от a до b). Наша цель — доказательство теоремы Линдемана–Веерштрасса (если α_i линейно независимые над Q алгебраические числа, то e^(α_i) алгебраически независимы), а также теоремы Гельфонда (если числа α ≠ 0,1; β ∉ Q алгебраические, то αβ есть число трансцендентное).
Математика ≫ Видео 0 Ø
Дмитрий Аносов
Лекции читает Аносов Дмитрий Викторович, доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна. 16-18 июля 2002 г.
Математика ≫ Видео 0 Ø
Виктор Клепцын
Действительное число можно сколь угодно точно приблизить рациональными. А насколько хорошим может быть такое приближение – в сравнении с его сложностью? Например, оборвав десятичную запись числа x на k-й цифре после запятой, мы получим приближение x≈a/10^k с ошибкой порядка 1/10^k. И вообще, зафиксировав знаменатель q у приближающей дроби, мы точно можем получить приближение с ошибкой порядка 1/q. А можно ли сделать лучше? Знакомое всем приближение π≈22/7 даёт ошибку порядка 1/1000 – то есть явно сильно лучше, чем можно было бы ожидать. А почему? Повезло ли нам, что у π такое приближение есть? Оказывается, что для любого иррационального числа есть бесконечно много дробей p/q, приближающих его лучше, чем 1/q^2. Это утверждает теорема Дирихле – и мы начнём курс с её немного нестандартного доказательства.
Математика ≫ Видео 0 Ø
Георгий Шабат
В школе нам всем прививается ошибочное представление о том, что на множестве рациональных чисел Q имеется единственное естественное расстояние (модуль разности), относительно которого все арифметические операции непрерывны. Однако существует ещё бесконечное множество расстояний, так называемых p-адических, по одному на каждое число p. Согласно теореме Островского, «обычное» расстояние вместе со всеми p-адическими уже действительно исчерпывают все разумные расстояние Q. Термин адельная демократия введен Ю. И. Маниным. Согласно принципу адельной демократии, все разумные расстояния на Q равны перед законами математики (может быть, лишь традиционное «чуть=чуть равнее…». В курсе будет введено кольцо аделей, позволяющее работать со всеми этими расстояниями одновременно.
Математика ≫ Видео 0 Ø
Леон Тахтаджян
Это будут четыре коротеньких рассказика. Начнем мы с чисел, потом поговорим о движении, об изменении, затем мы обсудим формы и размеры, а затем — начало и конец. В таком несколько зашифрованном стиле мы и попробуем посмотреть на математику изнутри и снаружи, причем именно как на предмет. То, о чем математики мыслят и чем живут, — об этом мы с вами сможем поговорить потом. Мы увидим, что некоторые вещи, которые нам кажутся очевидными, таковыми совсем не являются. Простые вещи могут оказаться сложными, а сложные — простыми.
Математика ≫ Видео 0 Ø
Сколько лет двоичной системе счисления? Она, конечно, старше первых компьютеров − на самом деле, намного старше. Первооткрывателем ее для Запада в начале XVIII в. стал Готфрид Лейбниц. А вот жители одного из островов Полинезии знали двоичную систему за сотни лет до того.
Математика 0 Ø
Корректно ответить на этот вопрос нельзя, поскольку числовой ряд не имеет верхнего предела. Так, к любому числу достаточно всего лишь прибавить единицу, чтобы получить число ещё большее. Хотя сами числа бесконечны, собственных названий у них не так уж и много, так как большинство из них довольствуются именами, составленными из чисел меньших. Понятно, что в конечном наборе чисел, которых человечество наградило собственным именем, должно быть какое-то наибольшее число. Но как оно называется и чему оно равно? Давайте же, попробуем в этом разобраться и заодно узнать, насколько большие числа придумали математики.
Математика 0 Ø
Илья Щуров
Математик Илья Щуров о десятичных дробях, трансцендентности и иррациональности числа Пи.
Математика 0 Ø
BBC
Как «единица» помогла построить первые города и великие империи? Как вдохновляла выдающиеся умы человечества? Какую роль в появлении денег она сыграла? Как «единица» объединилась с нулем, чтобы править современным миром? История единицы неразрывно связана с историей европейской цивилизации. Терри Джонс отправляется в юмористическое путешествие с целью собрать воедино удивительную историю нашего самого простого числа. С помощью компьютерной графики в этой программе единица оживает в самых различных испостасях. Из истории единицы становится ясно, откуда появились современные числа, и каким образом изобретение нуля спасло нас от необходимости сегодня использовать римские цифры.
Математика ≫ Видео 0 Ø
|1|2|3| >>>