x, y, z

Поиск публикаций: теория_групп

Поля поиска:




Запрос:
Номер раздела:
Сортировать:
Публикации: 22
|1|2| >>>
ПубликацияРазделКомм.
Брайан Дэвис
На протяжении большей части XX столетия в «чистой» математике царило замечательное единодушие относительно того, как нужно представлять результаты. Весь предмет сводился к комплексу теорем, каждая из которых, в конечном счете, выводилась из фиксированного набора аксиом путем так называемого строгого логического доказательства. В отдельных разделах математики, таких, например, как арифметика Пеано, справедливость аксиоматики выглядела самоочевидной, однако во многих случаях аксиомы попросту очерчивали рассматриваемую область вопросов. Для математиков, если только они не выходили за рамки математики, выступая в роли философов-любителей, принципиального различия между изобретением и открытием новых концепций не было.
Математика 0 Нет
Алексей Семихатов
Отчаянные по степени научной смелости и сложности эксперименты на Большом Адронном Коллайдере – это попытка оживить процесс познания Вселенной средствами чистой логики. Этот процесс начался в тот момент, когда Ньютон угадал, что Луна подчиняется в точности тому же закону движения, что и яблоко. С тех пор рафинированный логический анализ – математика – приобрел «непостижимую эффективность» в своей способности делать предсказания, которые непременно сбываются.
Математика > Видео 0 Нет
Эдвард Френкель
Как человек становится математиком? Наверное, существует множество разных путей и способов. Позвольте рассказать, как это произошло со мной. Вы, наверное, удивитесь, но в школе я ненавидел математику. Хотя нет, «ненавидел», пожалуй, слишком сильное слово. Скажем просто, я не очень-то ее любил. Мне казалось, что математика скучная. Я усердно выполнял все задания, но не понимал, зачем мне это. Материал, который мы разбирали в классе, казался мне бессмысленным и бесполезным.
Математика 0 Нет
Георгий Шабат
Предполагается прочесть четыре лекции. Первые две будут популярны и общепонятны, а третья и четвёртая будут содержать довольно поверхностные обзоры некоторых перспективных направлений современной математики. 1. О геометрии над конечными полями. 2. Группы Шевалле и группы перестановок. 3. Линейная алгебра над F1 и гомотопическая топология. 4. Разное. Обобщённые кольца Дурова и F∅, F±1, F∞√1. Анализ на множестве корней из единицы (по Хабиро, Концевичу, Манину). О геометрии Аракелова. О тропической математике.
Математика > Видео 0 Нет
Анатолий Вершик
Лишь недавно, и, как всегда одновременно и независимо, нескольким группам математиков понадобилось по разным поводам систематически изучать случайно выбранные подгруппы данной группы. Для докладчика этим поводом стала задача: найти инвариантные относительно сопряжения меры на решетке всех подгрупп данной группы. Эта задача важна для теории представлений (фактор-представления некоторых групп), и для самой теории динамических систем (вполне несвободные действия). Другие поводы — асимптотика чисел Бетти на локально симметрических пространствах, действия групп на деревьях, теория блужданий на случайных однородных пространствах и, по-видимому, это не всё. Доклад будет посвящен общим понятиям, разбору фундаментального примера, а именно, — что такое случайная подгруппа симметрической группы — конечной и бесконечной, и, наконец, объяснению того, как все это связано с теорией характеров.
Математика > Видео 0 Нет
Евгений Смирнов
Группы отражений являются дискретной группой движений пространства постоянной кривизны (сфера, евклидово или гиперболическое пространство), которая порождается множеством отражений. Группы отражений появляются удивительно часто в различных алгебраических задач.
Математика > Видео 0 Нет
Алексей Белов
Произведение элементов пишут в виде слова, изображаемого отрезком. А что значит умножить элементы по кругу? Какой смысл имеет мозаика, составленная из таких кругов? Понимание такого рода вещей приводит к решению ряда открытых вопросов. Например, допустим мы хотим задать конечным числом соотношений полугруппу в которой степень любого элемента равна нулю. Конечным числом запрещенных подслов на прямой нельзя добиться того, чтобы были сколь угодно длинные слова без запрещенных подслов и в то же время не было таких периодических слов. В то же время на плоскости существуют конечные системы запретов допускающие только апериодические замощения. Но как умножать с разных сторон? Эти и другие вопросы предполагается обсудить.
Математика > Видео 0 Нет
Алексей Белов
Планируется рассказать про свойства символьных последовательностей, и замечательные теоремы с ними связанные и их обобщения. Например, известно, что следующие классы слов почти эквивалентны: буквы a, b самым тщательным образом перемешаны, т.е. в кусках одинаковой длинны количество символов каждого сорта отличается не более чем на 1; количество различных подслов длины n равно n+1, т.е. минимально возможное; слово получается из поворота окружности на величину α при фиксации буквой a попадания на дугу длины α. Обобщение этой теоремы дает задача Арнольда о перекладывания отрезков. Красивые элементарные факты о поведении слов в которые добавляется не слишком много запретов, отражаются на теореме Голода–Шафаревича. Наверное, стоит упомянуть также теорему Ширшова о высоте.
Математика > Видео 0 Нет
Иван Лосев
Общепринятый формализм классической (гамильтоновой) механики подразумевает, что наблюдаемые образуют алгебру Пуассона, а эволюция системы задается уравнением Гамильтона. В общепринятом квантово-механическом формализме наблюдаемые — это самосопряженные операторы в гильбертовом пространстве, а эволюция задается уравнением Гейзенберга. Эти два уравнения похожи, но природа наблюдаемых совершенно разная. Это затрудняет переход как от классического к квантовому, так и обратно. По этой причине в [BFFLS] был предложен более простой (и более алгебраический) формализм для квантовой механики, в котором квантовая алгебра наблюдаемых становится деформацией классической. Я начну с того, что на примере потенциальной системы объясню возникновение скобки Пуассона и уравнения Гамильтона. Затем я поговорю о деформациях алгебр и объясню почему деформационный формализм с легкостью обеспечивает переход к квазиклассическому пределу.
Математика > Видео 0 Нет
Наталия Гончарук, Юрий Кудряшов
Параллельный перенос, поворот, поворотная гомотетия, композиция инверсии и осевой симметрии — частные случаи дробно-линейных отображений комплексной плоскости (в общем случае дробно-линейное отображение плоскости — это отображение, при котором точка z=x+iy переходит в точку (az+b)/(cz+d)). Как известно, инверсия выворачивает круг наизнанку: то, что было внутри, оказывается снаружи, и наоборот. Говорят, что набор дробно-линейных отображений f_1,…,f_g порождает группу Шоттки, если есть набор замкнутых жордановых кривых γ_1,…,γ_g, таких что: 1) Области, ограниченные кривыми γ_j, не пересекаются; 2) Под действием отображения f_j точки внутри γ_{2j-1} оказываются снаружи γ_{2j}, а точки снаружи γ_{2j-1} — внутри γ_{2j}.
Математика > Видео 0 Нет
Михаил Берштейн
В этой лекции преподаватель магистерской программы «Математическая физика» Сколтеха Михаил Берштейн рассказывает о фазовых переходах и модели Изинга.
Математика > Видео 0 Нет
Евгений Фейгин
Математик Евгений Фейгин о применениях групп Ли, дифференциальной геометрии и касательных пространствах.
Математика > Видео 0 Нет
Иван Лосев
В лекциях вводятся основные сведения из теории представлений конечных групп, объясняется подход Вершика и Окунькова к представлениям симметрических групп, рассказывается о том, что происходит в положительной характеристике и при чем тут алгебры Ли. Курс должен быть понятен студентам, начиная с первого курса, хорошо освоившим курс алгебры.
Математика > Видео 0 Нет
Алексей Савватеев
В миникурсе ликвидируются пробелы школьного образования, относящиеся к теории групп и к конкретным примерам групп. Будут установлены базовые факты про вычеты, доказана малая теорема Ферма, исследованы подгруппы групп перестановок на трёх и четырёх символах, введено понятие нормальной подгруппы данной группы и простоты группы. Затем будет доказано, что группа чётных перестановок на n≥5 символах — простая (что откроет желающим дорогу к вопросам о разрешимости алгебраических уравнений в радикалах), а также что подгруппа переносов плоскости (пространства) — нормальная в группе всех (аффинных) движений соответствующего объекта. Маломерные группы движений получат полную характеризацию (теорема Шаля и законы композиции движений разных видов).
Математика > Видео 0 Нет
Алексей Савватеев
Теория Галуа — раздел алгебры, позволяющий переформулировать определенные вопросы теории полей на языке теории групп, делая их в некотором смысле более простыми. Теория Галуа даёт единый элегантный подход к решению классических задач: какие фигуры можно построить циркулем и линейкой? какие алгебраические уравнения разрешимы с помощью стандартных алгебраических операций (сложение, вычитание, умножение, деление и извлечение корня)?
Математика > Видео 0 Нет
Алексей Савватеев
Геометрия — классическая Евклидова, Лобачевского, проективная и сферическая — не получает достаточного внимания в программах современных мат.факультетов (не говоря уже о школах). В то же время она наглядна и на редкость красива. Многие утверждения визуально очевидны и в то же время неожиданные (почему самолёт, летящий из Иркутска в Лиссабон, стартует сперва в направлении Норильска?) За 8 лекций слушатели ознакомятся с начальными сведениями в этой области математики, берущей своё начало более двух тысячелетий назад. Закончим мы гораздо более сложным материалом, непосредственно выводящим на современные разделы науки. Будут затронуты основы теории групп и алгебр Ли.
Математика > Видео 0 Нет
Никон Курносов
Основы теории групп. Представления конечных групп. Точечные и пространственные группы. Приложения теории групп: теория молекулярных орбиталей, нормальные колебания (проекторы и применение в исследовании веществ). Приложения теории групп в физике твёрдого тела: кристаллическая структура, колебания решётки или откуда берутся полупроводники. Знаний по физике и химии, выходящих за рамки школьной программы не требуется. По математике могут пригодиться сведения из программы первого курса.
Математика > Видео 0 Нет
Дмитрий Казаков
Как законы сохранения связаны с симметрией? На каких группах симметрии основана Стандартная модель? Какие примеры нарушенной симметрии существуют в физике элементарных частиц? О типах преобразований в физике частиц, лоренц-инвариантности и нарушениях симметрии рассказывает доктор физико-математических наук Дмитрий Казаков.
Физика > Видео 0 Нет
Дмитрий Казаков
Как были открыты три поколения кварков? Какие теории описывают взаимодействие частиц? Какими свойствами обладают кварки? О типах элементарных частиц, теории групп и открытии трех поколений кварков рассказывает доктор физико-математических наук Дмитрий Казаков.
Физика > Видео 0 Нет
Александр Буфетов, Роман Авдеев
Курс посвящён обобщению понятия вращения евклидова пространства. Оказывается, что с каждым евклидовым пространством можно связать новое пространство, объекты которого называются спинорами. Между исходным пространством и пространством спиноров имеется замечательная связь: всякому вращению исходного пространства можно сопоставить преобразование пространства спиноров, определённое однозначно с точностью до знака. Получаемые таким образом преобразования пространства спиноров образуют группу, называемую спинорной группой.
Математика > Видео 0 Нет
|1|2| >>>