x, y, z

Поиск > Публикации: статистика

Поля поиска:




Запрос:
Номер раздела:
Сортировать:
Публикации: 5
ПубликацияРазделКомм.
Альберт Ширяев
Рассматривается дискретный аналог броуновского движения. Именно свойства этого блуждания являются целью лекций с последующим переходом к броуновскому движению (винеровскому процессу). Применяя вероятностный подход мы вводим прежде всего основные характеристики: вероятностное пространство (Ω,F,P), случайные величины, математические ожидания и др. Далее рассматриваются фундаментальные свойства случайных блужданий: закон больших чисел, теорема Муавра-Лапласа, усиленный закон больших чисел, закон повторного логарифма и др. На примерах будет показано как вероятностная комбинаторика и свойства случайных блужданий приводят к результатам, слабо поддающихся интуиции.
Математика ≫ Видео 0 Ø
Иван Ященко
Летняя школа «Современная математика», г. Дубна 24-25 июля 2004 г.
Математика ≫ Видео 0 Ø
Александр Казанцев, Павел Яськов
Очень часто людям приходится принимать важные решения на основе вероятностных наблюдений, то есть имея знания об аналогичных процессах в прошлом. «Будет ли завтра дождь?», «Влияет ли лекарство на самочувствие больных?», «Какая будет сегодня загруженность дорог вечером?» — эти и другие подобные вопросы волнуют многих. Однако, в реальной жизни, в отличие от строгих математических моделей, исходы испытаний зависят от воли случая или от факторов, которые не были приняли во внимание. Так, например, загруженность дорог сегодня может быть намного больше, чем обычно, если погода оказалась хорошей и люди поехали на дачу. Или может показаться, что тестируемое лекарство дает намного больший эффект просто потому, что на малом количестве испытаний нам просто повезло. Как же тогда использовать знания о прошлом, если точно предсказать будущее все равно не получится?
Математика ≫ Видео 0 Ø
Александр Шень
Природа статистических законов вызывала споры с самого рождения теории вероятностей и продолжает их вызывать. Эти философские споры привели к рождению интересной математической теории: алгоритмической теории вероятностей и информации, которая — в отличие от классической — пытается дать определение индивидуального случайного объекта. Мы обсудим основные понятия этой теории и их связь с основаниями и парадоксами теории вероятностей. Об этом в публичной лекции математика Александра Шеня, кандидата физико-математических наук, старшего научный сотрудник Лаборатории теории передачи информации и управления ИППИ РАН.
Математика ≫ Видео 0 Ø
Наши представления о случайном, закономерном и невозможном часто расходятся с данными статистики и теории вероятностей. В книге «Несовершенная случайность. Как случай управляет нашей жизнью» американский физик и популяризатор науки Леонард Млодинов рассказывает о том, почему случайные алгоритмы выглядят так странно, в чем подвох «рандомной» тасовки песен на IPod и от чего зависит удача биржевого аналитика.
Математика 1 ?
4 Окт 2022 00:21:41 >>>