x, y, z

Поиск публикаций: основания_математики

Поля поиска:




Запрос:
Номер раздела:
Сортировать:
Публикации: 59
|1|2|3| >>>
ПубликацияРазделКомм.
Валерий Опойцев
Комплексные числа: Как возникают и что обеспечивают. Как введение «странных» объектов проливает свет на реальные проблемы. Теория вещественных чисел: Пополнение прямой. Сечения Дедекинда. Зачем это нужно. Системы счисления: Что говорил Плутарх. Позиционная запись чисел. Десятичная система, двоичная. Игра «Ним» на шахматной доске. Двоичный выигрывающий алгоритм. Множества и операции: Наивная теория множеств. Сходство и различия с арифметическими операциями. Булевы структуры. Какими моделями их можно наполнять. Как эти модели перекликаются. Математическая индукция: Аксиома Пеано. Механизм индукции. Примеры.
Математика ≫ Видео 0 Ø
Лев Беклемишев
Вычислимая функция f:N→N называется доказуемо рекурсивной в данной формальной теории T, если существует алгоритм её вычисления такой, что в T можно доказать утверждение «для любого x существует y такой, что f(x)=y». В математической логике такие функции изучаются по двум причинам. Во-первых, для данной программы нас часто интересует доказательство её корректности, в частности вопрос о том, завершает ли она работу при любых исходных данных. С другой стороны, варьируя функцию f мы можем ставить для теории T сколь угодно сложные (вплоть до невыполнимости) задачи на доказательство. Тем самым, доказуемо рекурсивные функции могут быть использованы для изучения различных формальных теорий. Такой подход приводит к наиболее впечатляющим на сегодняшний день примерам недоказуемых комбинаторных утверждений. Мы начнем с понятия машины Тьюринга и вычислимой функции. Разберемся, как формальная арифметика может говорить о вычислениях. Поймем, что для любых разумных систем аксиом T их запас доказуемо рекурсивных функций никак не может исчерпывать все вычислимые всюду определенные функции. Отсюда выведем первую теорему Гёделя о неполноте.
Математика ≫ Видео 0 Ø
Лев Беклемишев
Какую часть математических доказательств можно поручить компьютеру? Какие существуют виды интерактивных систем поиска математических доказательств? В чем заключается теорема о четырех красках? И как она была доказана? Математик Лев Беклемишев о теории множеств, интерактивных системах и проблеме о четырех красок.
Математика ≫ Видео 0 Ø
Беклемишев Лев
В чем заключается аксиоматический метод? Как развивалось понятие аксиомы? Кем был разработан аксиоматический метод? Какое место он занимает в математике? И какой критике подвергается этот метод? Математик Лев Беклемишев о неевклидовой геометрии, системе аксиом Гильберта и смысле в математике.
Математика ≫ Видео 0 Ø
Почему минус один умножить на минус один равно плюс один? Почему минус один умножить на плюс один равно минус один? Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Мы сначала постараемся понять это, исходя из истории развития арифметики, а потом ответим на этот вопрос с точки зрения современной математики.
Математика 0 Ø
Александр Буфетов
В стандартной интерпретации гёделева неразрешимая формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в системе S. Таким образом, A является аналогом парадокса лжеца. Рассуждения Гёделя в целом очень похожи на парадокс Ришара. Более того, для доказательства существования невыводимых утверждений может быть использован любой семантический парадокс.
Математика ≫ Видео 0 Ø
Валентина Кириченко
Параллельные прямые не пересекаются даже в геометрии Лобачевского. Где-то в фильмах часто можно встретить фразу: «А у нашего Лобачевского параллельные прямые пересеклись». Звучит красиво, но не соответствует действительности. Николай Иванович Лобачевский действительно придумал необыкновенную геометрию, в которой параллельные прямые ведут себя совсем не так, как мы привыкли. Но все же не пересекаются. Математик Валентина Кириченко о постулатах геометрии Евклида, аксиоме Лобачевского и критике Льюиса Кэрролла.
Математика ≫ Видео 0 Ø
Владлен Тиморин
Математик Владлен Тиморин о преимуществах комплексных чисел, кватернионах Гамильтона, восьмимерных числах Кэли и о разнообразии чисел в геометрии.
Математика ≫ Видео 0 Ø
Правдива ли евклидова геометрия? Верно ли она описывает пространство, в котором мы живем? Что значит истинность геометрии? Гаусс был одержимый идеей эмпирической верификации теорем евклидовой геометрии, и даже сам лично принял участие в проверке теоремы о равенстве π суммы внутренних углов треугольника. В этом направлении долгое время Гаусс работал один, продолжая начатую задолго до него критическую линию по пересмотру евклидовой геометрии. Но вот в 1830-е годы появились две важные работы, которые он с энтузиазмом поддержал. Это были работа русского математика, ректора Казанского университета Николая Лобачевского и работа венгра Яноша Бойяи.
Математика ≫ Видео 0 Ø
В середине XIX века были сделаны открытия, которые в корне изменили алгебру и привели к ее окончательному отделению от арифметики. История открытия алгебры кватернионов и булевой алгебры.
Математика ≫ Видео 0 Ø
Юрий Кудряшов
Принцип исключенного третьего говорит, что любое утверждение либо истинно, либо ложно. В этом курсе мы откажемся от принципа исключенного третьего. Мы не сможем ни доказывать от противного, ни перебирать случаи. Зато все наши доказательства будут в каком-то смысле конструктивны: доказательство существования объекта всегда можно будет превратить в компьютерную программу, которая строит этот объект. На практике конструктивные доказательства полезнее неконструктивных. Я расскажу о некоторых утверждениях конструктивной математики и о её связи с компьютерными системами доказательств.
Математика ≫ Видео 0 Ø
Жак Сезиано
За два тысячелетия произошло три важных расширения числовой области. Во-первых, около 450 г. до н.э. учёные школы Пифагора доказали существование иррациональных чисел. Их начальной целью было числовое выражение диагонали единичного квадрата. Во-вторых, в XIII-XV веках европейские учёные, решая системы линейных уравнений, допустили возможность одного отрицательного решения. И, в-третьих, в 1572 г. итальянский алгебраист Рафаэль Бомбелли использовал комплексные числа для получения действительного решения некоего кубического уравнения.
Математика ≫ Видео 0 Ø
Владимир Тихомиров
В докладе на примере геометрий Евклида и Лобачевского будет обсуждаться вопрос о том, что такое математическая истина и что означает «непротиворечивость геометрии». Будет рассказано об эволюции геометрических идей от Фалеса и Евклида до Пуанкаре и Гильберта, а также о специальной теории относительности Эйнштейна и об учебнике А. Н. Колмогорова по геометрии.
Математика ≫ Видео 0 Ø
Юрий Матиясевич
Метод координат, придуманный Рене Декартом, позволяет переформулировать любую задачу «на доказательство» из элементарной (грубо говоря, «школьной») геометрии в виде высказывания о вещественных числах. А что делать потом? Ведь уже для корней алгебраических уравнений пятой степени с одной неизвестной не существует явной формулы «в радикалах», а при переводе геометрических утверждений на алгебраический язык будут возникать сложные утверждения, содержащие много переменных, связанных как кванторами существования (это «неизвестные»), так и кванторами общности (это «параметры»). К счастью, польский логик и математик Альфред Тарский нашел в сороковые годы двадцатого столетия универсальный метод, позволяющий узнавать истинность или ложность любого высказывания про конечное множество вещественных чисел. Первоначальное авторское изложение этого метода занимало целую книгу и было очень трудно для восприятия. С тех пор многие авторы упрощали метод Тарского, и сегодня этот замечательный результат может быть доказан со всеми деталями за два часа и, надеюсь, понят старшеклассниками и младшекурсниками.
Математика ≫ Видео 0 Ø
Лев Беклемишев
В докладе рассмотрены два класса объектов, имеющих различную природу, но неожиданным образом аналогичные по своим свойствам. С одной стороны, так называемые алгебры доказуемости, возникающие при изучении свойств формальной доказуемости в арифметических теориях. С другой стороны, топологические пространства, наделённые одной или несколькими разреженными топологиями, то есть такими, что любое непустое подмножество X имеет хотя бы одну изолированную точку.
Математика ≫ Видео 0 Ø
Галина Синкевич
Труды Кантора в России начали переводить и пересказывать с 1892 года в Одессе, Москве, Томске, Казани, Петрограде. Идеи теории множеств были с энтузиазмом восприняты в России как математиками, так и философами, в их популяризации приняли участие такие известные учёные, как И.Ю. Тимченко, С.О. Шатуновский, А.В. Васильев, П.А. Флоренский, Б.К. Млодзеевский, В.Л. Некрасов, И.И. Жегалкин, П.С. Юшкевич-отец, А.И. Фет, А.П. Юшкевич-сын, А.Н. Колмогоров, Ф.А. Медведев. В Москве в 1911 году возникла школа теории функций и дескриптивной теории множеств. В 1970 году академик Понтрягин оценил теорию множеств как ненужную для молодых математиков, и подготовленный перевод трудов Кантора не вышел в свет. Мы впервые расскажем о трагической судьбе этого перевода.
Математика ≫ Видео 0 Ø
Михаил Раскин
В теории множеств есть несколько известных вопросов о том, следует ли из некоторых аксиом другая аксиома (или гипотеза; аксиома — это просто гипотеза, которой пользуется подавляющее большинство). Как и в других областях математики, недоказуемость можно продемонстрировать с помощью модели, в которой верны предположения, но не верна гипотеза. Для построения одного из самых известных таких примеров, модели теории множеств, в которой есть промежуточная мощность между мощностями натурального ряда и вещественной прямой, Коэн разработал метод вынуждения.
Математика ≫ Видео 0 Ø
В Евклидовой геометрии любое утверждение либо ложно, либо истинно, и третьего не дано. И в начале ХХ века математики наивно полагали, что такая же ситуация должна наблюдаться в любой логически непротиворечивой системе. И тут в 1931 году какой-то венский очкарик — математик Курт Гёдель — взял и опубликовал короткую статью, попросту опрокинувшую весь мир так называемой «математической логики». Гёдель попросту доказал следующее удивительное свойство любой системы аксиом: всякая система математических аксиом начиная с определенного уровня сложности либо внутренне противоречива, либо неполна.
Математика 1 Дед Бузюн
26 Мая 2019 10:52:38 >>>
Джордана Цепелевич
Всякая надежда на создание единой математической теории, амбициозного проекта, который был предложен математиком Давидом Гильбертом в 19 веке и продолжил существовать, поддерживаемый многими, в 20 столетии, рухнула. Основы математики были далеко не столь надежными, как того хотел бы Гильберт. А Гëдель своими теоремами ясно продемонстрировал, что любая система аксиом, какой бы обширной она ни была, уязвима для возникновения невосполнимых пробелов. Попытки же восполнить их созданием более полной системы породили бы только бóльшее количество утверждений без доказательств — так что и тут возникнет необходимость в усовершенствовании системы, и так далее до бесконечности. И случилось нечто странное: математики решили не обращать на это внимания. Они посчитали, что неполнота систем не имеет непосредственного влияния на их работу.
Математика 0 Ø
Галина Синкевич
Понятие числовой прямой сформировалось в конце XIX — начале XX веков. Мы рассмотрим этапы развития этого понятия в работах М. Штифеля (1544 г.), Галилея (1633 г.), Эйлера (1748 г.), Ламберта (1766 г.), Больцано (1830-е гг.), Мере (1869, 1872 гг.), Кантора (1872г.), Гейне (1872 г.), Дедекинда (1872 г.) и Вейерштрасса (с 1861 по 1885 гг).
Математика ≫ Видео 0 Ø
|1|2|3| >>>