x, y, z

Поиск публикаций: математика

Поля поиска:




Запрос:
Номер раздела:
Сортировать:
Публикации: 543
|1|2|3|4|5|…|28| >>>
ПубликацияРазделКомм.
Парадокс Бертрана заключается в следующем: рассмотрим равносторонний треугольник, вписанный в окружность. Наудачу выбирается хорда окружности. Какова вероятность того, что выбранная хорда длиннее стороны треугольника. Бертран предложил три решения, дающие различный результат.
Математика 0 Ø
Алексей Семихатов
Почему мы рассматриваем окружающий мир через призму математической логики? Как была открыта планета Нептун? И как Максвелл вывел свои уравнения? Как мы воспринимаем размерность пространства? Каким образом связаны логическое математическое мышление и интуиция? Как были описаны фракталы? Апории Зенона «Ахиллес и черепаха», отель Гильберта и размерности пространства. Как математически были классифицированы симметрии явлений? Как соотносятся полупростые группы Ли и физика элементарных частиц? Что явилось математической предпосылкой существования кварков? Полупростые группы Ли, классификация элементарных частиц и математические моделях в природе.
Математика ≫ Видео 0 Ø
Ричард Фейнман
Он берет счеты: жжжжжжжжжжжжжжжж — «Да», — соглашается он. И тут до меня доходит: он не знает чисел. Когда у тебя есть счеты, не нужно запоминать множество арифметических комбинаций; нужно просто научится щелкать костяшками вверх-вниз. Нет необходимости запоминать, что 9 + 7 = 16; ты просто знаешь, что когда прибавляешь 9, то нужно передвинуть десятичную костяшку вверх, а единичную — вниз. Поэтому основные арифметические действия мы выполняем медленнее, зато мы знаем числа.
Математика 0 Ø
Павел Пахлов, Вадим Ильин, Карима Нигматулина-Мащицкая
На грани безумия
Что такое математика? Многие не считают её самостоятельной наукой. Пожалуй, это комплимент, ибо её ранг — язык науки. Значит ли это, что математикам всё подвластно? Примеров тому множество — от открытия планет до Бозона Хигса. Простым людям математика помогает обобщать и анализировать сложные ситуации, усваивать стиль жизни, подспудно соответствующий математическим закономерностям. Может быть, самым элегантным из всех существующих.
Математика ≫ Видео 0 Ø
Алексей Семихатов
Современная теоретическая физика в очень высокой степени полагается на симметрии, потому что, каким-то образом, "Господь запустил Вселенную" (опять-таки, я ставлю… открываю, а потом закрываю кавычки), заложив в нее глубокие принципы симметрии. Теория Всего — это попытка угадать ту симметрию, которая вероятно действовала в момент, очень близкий к рождению Вселенной, и по законам которой получились и кварки (там не только кварки, электрон, например, такие-сякие нейтрино и фотон), и структуру галактик, именно такое распределение материй во Вселенной, общие изотропные свойства Вселенной, и так далее. Другими словами, задача стоит угадать то самое уравнение, согласно которому получили ту Вселенную, которую мы получили.
Физика ≫ Видео 0 Ø
Валерий Опойцев
Как по одному проводу или радиоканалу одновременно разговаривают миллионы? Кодовое разделение каналов CDMA (Code Division Multiple Access) на основе ортогональной системы векторов.
Информатика, компьютерные науки ≫ Видео 0 Ø
Валерий Опойцев
Комплексные числа: Как возникают и что обеспечивают. Как введение «странных» объектов проливает свет на реальные проблемы. Теория вещественных чисел: Пополнение прямой. Сечения Дедекинда. Зачем это нужно. Системы счисления: Что говорил Плутарх. Позиционная запись чисел. Десятичная система, двоичная. Игра «Ним» на шахматной доске. Двоичный выигрывающий алгоритм. Множества и операции: Наивная теория множеств. Сходство и различия с арифметическими операциями. Булевы структуры. Какими моделями их можно наполнять. Как эти модели перекликаются. Математическая индукция: Аксиома Пеано. Механизм индукции. Примеры.
Математика ≫ Видео 0 Ø
Валерий Опойцев
Истоки тригонометрии. Идеи подобия. Параллакс. Основные тригонометрические функции. Единичная окружность как сердцевина тригонометрии. О широком распространении гармонических колебаний. Обзор основных формул. Обратные тригонометрические функции. Чем плохи обратные функции вообще. Почему обратные тригонометрические ещё хуже.
Математика ≫ Видео 0 Ø
Валерий Опойцев
Выпуклость и неравенства. Неравенство Иенсена. Метод математической индукции. Среднее арифметическое больше среднего геометрического. Приёмы доказательств. Использование производных. О монгольском неравенстве. Метод интервалов. Неравенство с логарифмами.
Математика ≫ Видео 0 Ø
Валерий Опойцев
Числа и арифметика. Что такое функция. Способы задания. Характерные особенности. Линейная функция. Принципы суперпозиции, на которых стоит вся физика. Квадратные уравнения. Теорема Виета. Ряд Фибоначчи. Корни из отрицательных чисел. Квадратный многочлен. Неравенство Коши — Буняковского. Деление многочленов и теорема Безу. Показательная функция. Вычислительный алгоритм для извлечения корней. Экспоненциальный рост. Десять в сотой — накрывает всю Вселенную. Логарифмы. Закон Вебера — Фехнера. Децибелы. Дифференциальные уравнения.
Математика ≫ Видео 0 Ø
Документальный фильм об истории математики в Париже 19 века.
Математика ≫ Видео 0 Ø
Валерий Опойцев
Бросание монеты, дни рождения. Парадокс Кардано. О необходимости фиксации вероятностной модели в каждой ситуации. Задача о трёх картонках. Пространство элементарных событий. Суммы, произведения. Условные вероятности. Нарушение транзитивности при бросании костей. Случайные величины и их характеристики. Как возникают недоразумения из-за матожидания. Стоит ли покупать лотерейные билеты. Не обманывают ли нас страховые компании. Вывод закона больших чисел. Стабилизация функций большого числа переменных. Обоснование частотного определения вероятности. Парадокс Монти Холла. Конверты с деньгами. Семьи с близнецами. Интуитивно неожиданная ситуация с неравенствами. 01-последовательности.
Математика ≫ Видео 0 Ø
Валерий Опойцев
Если кто-то думает, что мы учимся строить графики, — то это для нас не главное. Мы рассчитываем на побочные результаты. Графики с модулями. Но это лишь повод. А речь об умении вообще строить графики, иметь дело с различными функциями и логически мыслить. На проделанную работу важно смотреть не как на ассортимент опробованных графиков, а как на совокупность методов и приёмов построения графиков, которые годятся совсем в других обстоятельствах. Стиль и логика мышления — вот что главное.
Математика ≫ Видео 0 Ø
Валерий Опойцев
Если что и даёт ясное представление о высшей математике, так это линейная алгебра. Барьер повседневности здесь преодолевается легко и просто. При этом оказывается, что удивительные вещи находятся не в туманной дали, а совсем рядом. В этом курсе: линейные задачи и векторы, линейные преобразования и матрицы, элементарные преобразования, теория определителей, системы уравнений, замена координат, собственные значения и собственные векторы, операторы на комплексной плоскости, спектральная теория, квадратичные формы, сопряжённое пространство, триангуляция Шура, функции от матриц, матричные ряды.
Математика ≫ Видео 0 Ø
Валерий Опойцев
Тематику дифференциальных уравнений, безусловно, надо расширять, иначе «молодые побеги» — хаос, аттракторы, солитоны — будут расти сквозь асфальт. С другой стороны, базовые курсы нуждаются в резком сокращении, поскольку для самих дифуров не так много места остается в этой жизни. Из-за информационного переполнения. При этом стандартных мер недостает. Единственное средство — тривиализация дисциплины. Математика, как и человек, — иногда надувает щеки, наряжается и творит мифы. Поэтому в дифурах немало лишнего, вычурного, случайного — и одно лишь наведение порядка высвобождает массу свободного места. Данный мини-курс адресован «всем», поскольку преподносит некую общую часть. Не простую и не сложную, но дающую представление об основах и позволяющую при необходимости быстро войти в предмет и двигаться дальше.
Математика ≫ Видео 0 Ø
Валерий Опойцев
ТФКП — теория функций комплексной переменной, эквивалент «теории аналитических функций». Математическая дисциплина второго круга образования — не в каждом техническом ВУЗе преподаётся. А жаль. Потому что ТФКП необыкновенно красива и в своей основе достаточно проста. Ибо в римановы пространства и конформные преобразования не обязательно заглядывать без особой надобности. Но и без них в лучах «аналитических функций» многое в нижележащих слоях математики озаряется буквально волшебным светом. Проясняется и упрощается. Вскрываются внутренние механизмы, обнажаются загадки. Поэтому ТФКП, по крайней мере в «данном исполнении», можно рекомендовать для самообразования. Простое изложение может оказаться полезным и при углублённом изучении предмета, когда подробности мешают видеть общую картину.
Математика ≫ Видео 0 Ø
Несколько дней назад сообщество математиков — специалистов в теории графов было взволновано сообщением о том, что выдвинутая Стефеном Хидетниеми (Stephen T. Hedetniemi) в 1966 году гипотеза оказалась неверной. Оказывается, хроматическое число тензорного произведения двух графов может быть меньше минимума хроматических чисел сомножителей, а не всегда равно этому минимуму, как когда-то предположил Хидетниеми. Как построить контрпример к этой гипотезе, придумал молодой московский математик Ярослав Шитов.
Математика 0 Ø
Четыре тысячи лет назад жители Вавилонии изобрели умножение. А в марте этого года математики усовершенствовали его. 18 марта 2019 два исследователя описали самый быстрый из известных методов перемножения двух очень больших чисел. Работа отмечает кульминацию давнишнего поиска наиболее эффективной процедуры выполнения одной из базовых операций математики. «Все думают, что метод умножения, который они учили в школе, наилучший, но на самом деле в этой области идут активные исследования», — говорит Йорис ван дер Хувен, математик из Французского национального центра научных исследований, один из соавторов работы.
Математика 0 Ø
Попробуйте выведать у физика, что такое время. Это вам очевидно, что время это последовательность событий и оно течет вперед. Чем больше вы знаете и чем глубже погружаетесь, тем менее это становится очевидным. Описание того, что такое время, все больше схлопывается к тому, что время — это буквочка t, которая участвует в таких-то математических уравнениях. По мере движения к все более фундаментальному уровню математика становится все более сложной, а словесно-описательный багаж начинает все больше вырождаться. В пределе, предполагает Макс, у Общей Теории Всего нет багажа. Физика пытается найти уравнения для нашего мира, исходя из наблюдений и экспериментальных данных. Макс предлагает рассмотреть “Физику Наоборот” — вы задаете уравнения, какой мир вы получаете?
Философия 0 Ø
RSA (аббревиатура от фамилий Rivest, Shamir и Adleman) — криптографический алгоритм с открытым ключом, основывающийся на вычислительной сложности задачи факторизации больших целых чисел. Алгоритм используется в большом числе криптографических приложений, включая PGP, S/MIME, TLS/SSL, IPSEC/IKE и других.
Информатика, компьютерные науки ≫ Видео 0 Ø
|1|2|3|4|5|…|28| >>>