x, y, z

Поиск > Публикации: компьютерное_доказательство

Поля поиска:




Запрос:
Номер раздела:
Сортировать:
Публикации: 4
ПубликацияРазделКомм.
Лев Беклемишев
Какую часть математических доказательств можно поручить компьютеру? Какие существуют виды интерактивных систем поиска математических доказательств? В чем заключается теорема о четырех красках? И как она была доказана? Математик Лев Беклемишев о теории множеств, интерактивных системах и проблеме о четырех красок.
Математика ≫ Видео 0 Ø
Юрий Кудряшов
Принцип исключенного третьего говорит, что любое утверждение либо истинно, либо ложно. В этом курсе мы откажемся от принципа исключенного третьего. Мы не сможем ни доказывать от противного, ни перебирать случаи. Зато все наши доказательства будут в каком-то смысле конструктивны: доказательство существования объекта всегда можно будет превратить в компьютерную программу, которая строит этот объект. На практике конструктивные доказательства полезнее неконструктивных. Я расскажу о некоторых утверждениях конструктивной математики и о её связи с компьютерными системами доказательств.
Математика ≫ Видео 0 Ø
Thomas Fernique
Теорема о четырёх красках утверждает, что всякую расположенную на сфере карту можно раскрасить четырьмя красками так, чтобы любые две области, имеющие общий участок границы, были раскрашены в разные цвета. В виде проблемы она была сформулирована в 1852 году — и доказана в 1976-м лишь с помощью компьютера. Такое решение не всем понравилось, и некоторые до сих пор ждут доказательства, которое можно проверить без компьютера. Другие (как великий математик Владимир Воеводский) — наоборот, стали развивать автоматическую проверку правильности доказательств на компьютере… В курсе мы разберем доказательство теоремы о четырёх красках (это простая комбинаторика, доступная любому школьнику), а также обсудим сегодняшнее использование компьютера в математике (надо примерно знать, что такое компьютер).
Математика ≫ Видео 0 Ø
Математики из Университета Техаса в Остине с помощью компьютерных методов решили задачу о булевых пифагоровых тройках. Полная запись решения занимает около 200 терабайт, что делает его самым большим доказательством из существующих. На решение задачи ушло два дня непрерывной работы 800-процессорного суперкомпьютера.
Математика 0 Ø