x, y, z

Поиск публикаций: геометрия [3]

Поля поиска:




Запрос:
Номер раздела:
Сортировать:
Публикации: 105
<<< |1|2|3|4|5|6| >>>
ПубликацияРазделКомм.
Алексей Сосинский
Один из важнейших понятий механики и теоретической физики — понятие конфигурационного пространства механической системы — почему-то остается неизвестным не только школьникам, но и большинству студентов-математиков. В лекции рассмотрен очень простой, но весьма содержательный класс механических систем — плоские шарнирные механизмы с двумя степенями свободы. Мы обнаружим, что в «общем случае» их конфигурационные пространства суть двумерные поверхности, и постараемся понять — какие именно. (Здесь имеются окончательные результаты десятилетней давности Димы Звонкина.) Далее обсуждаются нерешенные математические задачи, связанные с шарнирными механизмами. (В том числе две гипотезы, а точнее — недоказанные теоремы, американского математика Билла Тёрстона.)
Математика ≫ Видео 0 Ø
Алексей Сосинский
Лекция начнется с демонстрации недавно обнаруженной серии физических экспериментов с проволочном контуром, который моделирует узлы (т.е. гладкие замкнутые кривые в пространстве). Оказывается, что этот контур — очень умный: он во многих случаях умеет распутывать тривиальный узел в круглую окружность, выполнять т.н. движения Рейдемейстера, движения Маркова, фокус Уитни, и всегда минимизирует т.н. индекс Уитни. Во второй части лекции будет рассмотрен один из красивейших подходов к изучению математической теории узлов, основанный на использовании т.н. «энергии узлов».
Математика ≫ Видео 0 Ø
Михаил Цфасман
Алгебраическая геометрия — раздел математики, который объединяет алгебру и геометрию. Главным предметом изучения классической алгебраической геометрии, а также в широком смысле и современной алгебраической геометрии, являются множества решений систем алгебраических уравнений. Современная алгебраическая геометрия во многом основана на методах общей алгебры (особенно коммутативной) для решения задач, возникающих в геометрии.
Математика ≫ Видео 0 Ø
Георгий Шабат
Программа курса: История. Первые оценки. Проблема соизмеримости длины окружности с ее диаметром. Бесконечные ряды, произведения и другие выражения для π. Сходимость и ее качество. Выражения, содержащие π. Последовательности, быстро сходящиеся к π. Современные методы вычисления π, использование компьютеров. Об иррациональности и трансцендентности π и некоторых других чисел. Предварительных знаний для понимания курса не требуется.
Математика ≫ Видео 0 Ø
Дмитрий Горбунов, Михаил Маров, Алексей Семихатов
На грани безумия
Как самостоятельная наука Геометрия зародилась еще в Древней Греции. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объема. Интересно, как бы отреагировал Эвклид на теорию четырехмерного подхода? Новые представления о мире связаны с многомерностью пространства. Великий французский архитектор Корбюзье как-то воскликнул: "Все вокруг геометрия!". В начале 21-го столетия мы с еще большим изумлением можем это повторить. Что же такое современная геометрия? И как она используется в разных науках?
Математика ≫ Видео 0 Ø
Дмитрий Аносов
В книге рассказывается о дифференциальных уравнениях. В одних случаях автор объясняет, как решаются дифференциальные уравнения, а в других—как геометрические соображения помогают понять свойства их решений. (С этим и связаны слова «то решаем, то рисуем» в названии книги.) Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых достижениях XX века, включая понимание механизма возникновения «хаоса» в поведении детерминированных объектов. Книга рассчитана на интересующихся математикой школьников старших классов. От них требуется лишь понимание смысла производной как мгновенной скорости.
Математика ≫ Книги 0 Ø
Георгий Шарыгин
Большинство современных изложений неевклидовой геометрии (под этим термином обычно понимают геометрию Лобачевского), начинаются с построения той или иной модели этой геометрии, на основании которой уже выводят различные формулы и доказывают теоремы. Между тем, исторически дело происходило с точностью до наоборот: лишь доказав огромное количество странных и удивительных теорем, математики приступили к построению моделей, в которых эти теоремы выполнялись бы. Можно сказать, что именно существование (точнее, доказательство) такого большого количества удивительных фактов привело к пониманию необходимости построения моделей, что, в свою очередь поменяло навсегда не только наше представление о том, что такое геометрия, но и вызвало к жизни новые взгляды на предмет изучения всей математики. Поскольку я считаю, что, как и в биологии, в математике онтогенез повторяет филогенез, то и свою лекцию я посвящаю краткому изложению истории этого «филогенеза», что, я надеюсь будет полезно слушателям.
Математика ≫ Видео 0 Ø
Алексей Савватеев
Геометрия — классическая Евклидова, Лобачевского, проективная и сферическая — не получает достаточного внимания в программах современных мат.факультетов (не говоря уже о школах). В то же время она наглядна и на редкость красива. Многие утверждения визуально очевидны и в то же время неожиданные (почему самолёт, летящий из Иркутска в Лиссабон, стартует сперва в направлении Норильска?) За 8 лекций слушатели ознакомятся с начальными сведениями в этой области математики, берущей своё начало более двух тысячелетий назад. Закончим мы гораздо более сложным материалом, непосредственно выводящим на современные разделы науки. Будут затронуты основы теории групп и алгебр Ли.
Математика ≫ Видео 0 Ø
Наталья Карпушина
Знаете ли вы, почему в окружности 360 градусов, а не 180 или, скажем, не 300? Откуда пошла традиция делить окружность на равные части и почему было выбрано именно такое их число? Оказывается, этому делению мы обязаны вавилонянам. Считается, что они же изобрели простейший инструмент для измерения углов − транспортир. Но вот вопрос: как же древние сумели разделить окружность на равные части, не владея техникой геометрических построений и располагая лишь примитивными инструментами?
Математика 0 Ø
Александра Скрипченко
Математик Александра Скрипченко о биллиарде как динамической системе, рациональных углах и теореме Пуанкаре.
Математика ≫ Видео 0 Ø
Михаил Берштейн
В этой лекции преподаватель магистерской программы «Математическая физика» Сколтеха Михаил Берштейн рассказывает о фазовых переходах и модели Изинга.
Математика ≫ Видео 0 Ø
Наталия Гончарук, Юрий Кудряшов
Параллельный перенос, поворот, поворотная гомотетия, композиция инверсии и осевой симметрии — частные случаи дробно-линейных отображений комплексной плоскости (в общем случае дробно-линейное отображение плоскости — это отображение, при котором точка z=x+iy переходит в точку (az+b)/(cz+d)). Как известно, инверсия выворачивает круг наизнанку: то, что было внутри, оказывается снаружи, и наоборот. Говорят, что набор дробно-линейных отображений f_1,…,f_g порождает группу Шоттки, если есть набор замкнутых жордановых кривых γ_1,…,γ_g, таких что: 1) Области, ограниченные кривыми γ_j, не пересекаются; 2) Под действием отображения f_j точки внутри γ_{2j-1} оказываются снаружи γ_{2j}, а точки снаружи γ_{2j-1} — внутри γ_{2j}.
Математика ≫ Видео 0 Ø
Георгий Шабат
Пифагоровой тройкой называются три натуральных числа равные длинам сторон некоторого прямоугольного треугольника. Ещё древние вавилоняне умели находить такие тройки, причём огромных размеров и не пропорциональные друг другу. С современной точки зрения, такая задача равносильна нахождению точек с рациональными координатами на единичной окружности, стандартно вложенной в координатную плоскость. Успехи вавилонян объясняются тем, что множество таких точек бесконечно; в течение тысячелетий постепенно выяснилось, что большинство плоских кривых этим свойством окружности не обладает. Однако полная ясность наступила лишь в двадцатом веке: было обнаружено, что всё дело в топологии комплексификации кривой. На лекции будет рассказано об истории этих исследований и о проблемах, остающихся на сегодняшний день открытыми.
Математика ≫ Видео 0 Ø
Эмиль Ахмедов
Физик Эмиль Ахмедов об определении положения на плоскости и в пространстве, необходимых координатах и атомных часах. Я расскажу об общих принципах работы GPS и ГЛОНАСС. Потом я объясню, какое это имеет отношение к специальной и общей теории относительности. Начну издалека. Треугольник является жесткой фигурой на плоскости в том смысле, что если вы возьмете три шарнира и соедините их тремя жесткими палками, то эти шарниры нельзя будет сместить, нельзя будет двигать. Если вы возьмете четыре шарнира или больше и соедините их соответствующим количеством палок, чтобы получился многоугольник, то этот многоугольник может ходить ходуном. Четырехугольник можно деформировать, поэтому, если углов больше чем три, фигура на плоскости уже нежесткая.
Физика ≫ Видео 0 Ø
Владимир Успенский
Как известно, ежа нельзя причесать. Иными словами, на двумерной сфере нет касательного векторного поля, нигде не обращающегося в нуль. Трехмерная сфера ведет себя в этом отношении совсем иначе: на ней можно построить три касательных векторных поля, линейно независимых в каждой точке. Это означает, что трехмерная сфера параллелизуема. Возникает вопрос, для каких n сфера размерности n–1 параллелизуема. С этим вопросом тесно связан другой: для каких n на n-мерном эвклидовом пространстве можно ввести билинейное умножение, при котором произведение любых двух ненулевых векторов ненулевое. Рассматривая вещественные числа, комплексные числа, кватернионы или октонионы, мы видим, что это можно сделать, если n принимает одно из значений 1, 2, 4, 8. Оказывается, что этот список значений и является ответом на оба поставленных выше вопроса. Это трудная теорема. Ее можно доказать методами К-теории. Курс будет посвящен объяснению основных идей доказательства.
Математика ≫ Видео 0 Ø
Владимир Успенский
Около 20 лет назад произошло одно из самых сенсационных событий за всю историю математики: была доказана Великая Теорема Ферма. Эта теорема может быть выведена из так называемой гипотезы Таниямы–Шимуры–Вейля (которая теперь имеет статус теоремы): всякая эллиптическая кривая, определенная над полем рациональных чисел, модулярна. Цель нашего курса — разобраться в том, что означают эти слова. Мы познакомимся с необходимыми понятиями (римановы поверхности, модулярные формы, алгебраические кривые) и рассмотрим различные варианты теоремы о модулярности эллиптических кривых.
Математика ≫ Видео 0 Ø
Владимир Успенский
Курс посвящен римановым поверхностям, модулярным формам и некоторым их приложениям. Эти фундаментальные понятия, играющие важную роль в самых разных разделах математики, можно определить при помощи верхней полуплоскости – множества комплексных чисел с положительной мнимой частью, – которую мы будем рассматривать как модель Пуанкаре плоскости Лобачевского. Соответствующие определения будут даны в курсе.
Математика ≫ Видео 0 Ø
Евгений Смирнов
Исчислительная геометрия занимается подсчетом числа геометрических объектов, удовлетворяющих данных условиям. Первой задачей исчислительной геометрии принято считать задачу Аполлония (III в. до н.э.) о числе окружностей, касающихся трех данных окружностей. Как известно всем любителям геометрии, таких окружностей может быть не более восьми, и все их можно построить циркулем и линейкой. С точки зрения проективной геометрии окружности можно рассматривать как коники (кривые второго порядка) на комплексной проективной плоскости, проходящие через две фиксированные бесконечно удаленные точки. Поэтому задача Аполлония есть задача о подсчете числа коник, заданных пятью условиями (прохождение через две точки и касание трех коник). В 1848 году Якоб Штейнер обобщил эту задачу: он предложил найти число коник, касающихся пяти данных коник.
Математика ≫ Видео 0 Ø
Александр Кузнецов
Инварианты Громова–Виттена – это замечательный набор численных инвариантов алгебраического (и, более общо, симплектического) многообразия, обобщающих индексы пересечения когомологических классов. Они позволяют ввести на кольце когомологий новое, так называемое квантовое умножение, являющееся деформацией обычного умножения в когомологиях, и являются первым шагом к пониманию зеркальной симметрии – удивительного явления, открытого физиками в конце 80-х годов прошлого века. Для алгебраического многообразия инварианты Громова–Виттена определяются через теорию пересечений пространства модулей кривых в этом многообразии. Я постараюсь объяснить, что такое пространство модулей кривых и как с ним обращаться, какие возникают сложности с вычислением инвариантов Громова–Виттена и как их преодолевают.
Математика ≫ Видео 0 Ø
Александр Кузнецов
Система корней — этот конечный набор векторов в евклидовом пространстве, такой что для любого из этих векторов v зеркальная симметрия s_v относительно гиперплоскости H_v, перпендикулярной к v, сохраняет систему, причем для всякого вектора v' из системы s_v(v') − v' является целым кратным вектора v. Оказывается, системы корней можно полностью классифицировать. Возникает несколько «серий» (бесконечных последовательностей) и несколько «исключительных» систем. Мы поговорим о системах корней в пространствах произвольной размерности, их классификации, и возникающих в связи с этим диаграммах Дынкина.
Математика ≫ Видео 0 Ø
<<< |1|2|3|4|5|6| >>>