x, y, z

Поиск публикаций: геометрия [2]

Поля поиска:




Запрос:
Номер раздела:
Сортировать:
Публикации: 105
<<< |1|2|3|4|5|6| >>>
ПубликацияРазделКомм.
Алексей Белов, Иван Митрофанов
В этом курсе будет рассказано о подстановочных системах довольно общего вида и о связанных с ними геометрических конструкциях, называемых фракталами Рози. Например, слово Трибоначчи 121312112131… состоит из цифр {1,2,3} и получается с помощью подстановки 1→12, 2→13, 3→1. Оказывается, что оно в некотором смысле устроено так же, как двумерный тор, разбитый на три части с фрактальной границей. (В то, что на первом рисунке изображена развёртка тора, трудно поверить, но тем не менее это так, и вторая картинка это иллюстрирует).
Математика ≫ Видео 0 Ø
Алексей Белов
Известна олимпиадная задача: На плоском столе лежат монеты (выпуклые фигуры). Тогда одну из них можно стащить со стола, не задевая остальных. Долгое время математики пытались доказать пространственный аналог этого утверждения, пока не был построен контрпример! Возникла идея: в малом зерне часто нет трещины, трещина за границу зерна не вырастает, а трещины друг друга держат. Эта идея теоретически позволяет создавать композиты в которых не растут трещины, в частности, броню из керамики.
Математика ≫ Видео 0 Ø
Сергей Новиков
Лекцию читает Новиков Сергей Петрович, академик РАН, доктор физико-математических наук, профессор. Летняя школа «Современная математика», г. Дубна 21 июля 2005 г.
Математика ≫ Видео 0 Ø
Александр Буфетов, Роман Авдеев
Курс посвящён обобщению понятия вращения евклидова пространства. Оказывается, что с каждым евклидовым пространством можно связать новое пространство, объекты которого называются спинорами. Между исходным пространством и пространством спиноров имеется замечательная связь: всякому вращению исходного пространства можно сопоставить преобразование пространства спиноров, определённое однозначно с точностью до знака. Получаемые таким образом преобразования пространства спиноров образуют группу, называемую спинорной группой.
Математика ≫ Видео 0 Ø
Сергей Новиков
Квазипериодические функции: что это такое, откуда возникают, проблемы их изучения, как появляется топология и динамические системы. Лекцию читает Новиков Сергей Петрович, академик РАН, доктор физико-математических наук, профессор.
Математика ≫ Видео 0 Ø
Сергей Новиков
Лекцию читает Новиков Сергей Петрович, академик РАН, доктор физико-математических наук, профессор. Летняя школа «Современная математика», г. Дубна. 20 июля 2003 г.
Математика ≫ Видео 0 Ø
Сергей Новиков
В совместной работе с И. Дынниковым мы предложили дискретный вариант комплексного анализа, который стартует с решётки правильных треугольников на плоскости. Нам представляется, что этот подход лучше обычного подхода, использующего квадратную решётку.
Математика ≫ Видео 0 Ø
Математик Мишель Рудольф-Лилит из Национального центра научных исследований Франции описала особенности окружностей, начерченных в дискретном пространстве, в качестве примера которого ученый рассмотрела пересечения улиц и проспектов Манхэттена — центрального района Нью-Йорка. Оказалось, что можно аналитически описать несколько алгоритмов, следуя которым, гипотетический таксист проедет вдоль линии, максимально приближенной к идеальной окружности, а при достаточно большом ее радиусе можно с хорошей точностью измерить число π.
Математика 0 Ø
Сергей Новиков
Лекция будет посвящена некоторым нестандартным аспектам элементарной симплектической геометрии и линейной алгебры и их применению для нужд квантовой теории рассеяния. Для большинства математиков этот язык непривычен, поэтому все необходимые понятия будут введены самым элементарным образом.
Математика ≫ Видео 0 Ø
Математика — это не только замечательная точная наука, но еще и удивительные человеческие судьбы. Девушка из Ирана по имени Мариам Мирзахани стала первой в мире женщиной, получившей Филдсовскую медаль — пожалуй, самую престижную награду в математике. Мариам показала как иранским ученым, так и простым людям, в частности женщинам, — чего может добиться человек собственным умом и собственной настойчивостью.
Математика 0 Ø
Дж. Д. Марри
Возможно, в основе широкого разнообразия раскрасок шкуры у животных, наблюдаемого в природе, лежит единый механизм формирования таких структур. Результаты математического моделирования этого механизма открывают биологам новые перспективы для исследований.
Математика 0 Ø
Александр Кириллов
Фракталы можно в первом приближении описать как множества дробной размерности. В курсе в основном рассказано про ковер Серпинского (размерности log[2]⁡3=1.585…) и ковер Аполлония размерности 1.308… (точное значение неизвестно!).
Математика ≫ Видео 0 Ø
Сергей Ландо
Что такое каустики, знает всякий, кто когда-либо выжигал по дереву, собирая солнечные лучи с помощью линзы, видел световые блики на дне неглубокого водоема от ряби на поверхности воды или наблюдал игру света, отражающегося от дна чашки. Латинское слово «каустик» означает «жгучий», и им называют множество тех точек в пространстве, в которых собирается больше лучей какого-либо светового потока, чем в соседних точках. Скажем, каустика равномерно излучающей сферы это ее центр — в него приходят все лучи. Однако если сферу немного возмутить — сжать в одном направлении и растянуть в другом, то каустика превращается из точки в очень интересную поверхность, о которой, в основном, и пойдет речь.
Математика ≫ Видео 0 Ø
Сергей Львовский
Если назвать точки на плоскости «прямыми», прямые на плоскости «точками», а «прямой», проходящей через две «точки», назвать точку пересечения соответствующих прямых, то (при правильном понимании) полученная «плоскость» будет обладать всеми свойствами обычной плоскости. Этот эффект известен в математике под названием проективной двойственности. Проективная двойственность небезынтересна уже при работе исключительно с точками и прямыми на плоскости и вдвойне интересна при работе с «искривленными» геометрическими фигурами: кривыми, поверхностями и многообразиями более высокой размерности.
Математика ≫ Видео 0 Ø
Владимир Тихомиров
В докладе на примере геометрий Евклида и Лобачевского будет обсуждаться вопрос о том, что такое математическая истина и что означает «непротиворечивость геометрии». Будет рассказано об эволюции геометрических идей от Фалеса и Евклида до Пуанкаре и Гильберта, а также о специальной теории относительности Эйнштейна и об учебнике А. Н. Колмогорова по геометрии.
Математика ≫ Видео 0 Ø
Владимир Тихомиров
Однажды в Доме ученых мне удалось организовать диспут на тему «Развитие геометрии в двадцатом столетии». Естественно возник вопрос: а что такое геометрия? Что произошло с геометрией в прошлом веке? Геометрия ныне одна из многих? Кого из наших современников можно назвать великим геометром?
Математика ≫ Видео 0 Ø
Юрий Бурман
Число В вершин, число Р ребер и число Г граней выпуклого многогранника связаны соотношением В−Р+Г=2. Легко сообразить, что это широко известное утверждение не имеет прямого отношения к выпуклости: если на боку выпуклого многогранника сделать вмятину, то он перестанет быть выпуклым, а количество вершин, ребер и граней сохранится. В то же время для совершенно произвольного многогранника теорема неверна. В данном курсе мы выясним, в каких именно случаях эти утверждения верны и почему на самом деле это — одна и та же теорема. Также мы разберемся, как выглядят аналогичные утверждения для других поверхностей, и не только для поверхностей (а, например, для графов или для многомерной сферы).
Математика ≫ Видео 0 Ø
Юрий Матиясевич
Метод координат, придуманный Рене Декартом, позволяет переформулировать любую задачу «на доказательство» из элементарной (грубо говоря, «школьной») геометрии в виде высказывания о вещественных числах. А что делать потом? Ведь уже для корней алгебраических уравнений пятой степени с одной неизвестной не существует явной формулы «в радикалах», а при переводе геометрических утверждений на алгебраический язык будут возникать сложные утверждения, содержащие много переменных, связанных как кванторами существования (это «неизвестные»), так и кванторами общности (это «параметры»). К счастью, польский логик и математик Альфред Тарский нашел в сороковые годы двадцатого столетия универсальный метод, позволяющий узнавать истинность или ложность любого высказывания про конечное множество вещественных чисел. Первоначальное авторское изложение этого метода занимало целую книгу и было очень трудно для восприятия. С тех пор многие авторы упрощали метод Тарского, и сегодня этот замечательный результат может быть доказан со всеми деталями за два часа и, надеюсь, понят старшеклассниками и младшекурсниками.
Математика ≫ Видео 0 Ø
Юрий Матиясевич
Гипотеза Римана может быть сформулирована как утверждение об определителях некоторых матриц, элементы которых задаются через коэффициенты разложения дзета-функции Римана в ряд Тейлора. Оказалось, что в распределении собственных чисел этих матриц можно увидеть некоторые закономерности, позволяющие сформулировать новые гипотезы. В докладе будет показано много «картинок» и компьютерная анимация, раскрывающая «тайную жизнь дзета-функции Римана».
Математика ≫ Видео 0 Ø
Сергей Львовский
Цель этого курса — познакомить слушателей с дифференциальной геометрией на материале одного классического сюжета, не дублируя того, что им будет рассказано в процессе дальнейшего обучения, и не прибегая к сколько-нибудь сложным вычислениям. Развертывающаяся поверхность — это поверхность, которая получается, если согнуть лист бумаги, не делая складок. Развертывающиеся поверхности обладают замечательными свойствами. Некоторые из этих свойств можно увидеть, если очень внимательно приглядеться к согнутому листу бумаги, некоторые другие таким способом заметить, пожалуй, нельзя.
Математика ≫ Видео 0 Ø
<<< |1|2|3|4|5|6| >>>