x, y, z

Поиск публикаций: Алексей_Сосинский

Поля поиска:




Запрос:
Номер раздела:
Сортировать:
Публикации: 8
ПубликацияРазделКомм.
Алексей Сосинский
Один из важнейших понятий механики и теоретической физики — понятие конфигурационного пространства механической системы — почему-то остается неизвестным не только школьникам, но и большинству студентов-математиков. В лекции рассмотрен очень простой, но весьма содержательный класс механических систем — плоские шарнирные механизмы с двумя степенями свободы. Мы обнаружим, что в «общем случае» их конфигурационные пространства суть двумерные поверхности, и постараемся понять — какие именно. (Здесь имеются окончательные результаты десятилетней давности Димы Звонкина.) Далее обсуждаются нерешенные математические задачи, связанные с шарнирными механизмами. (В том числе две гипотезы, а точнее — недоказанные теоремы, американского математика Билла Тёрстона.)
Математика ≫ Видео 0 Ø
Алексей Сосинский
Лекция начнется с демонстрации недавно обнаруженной серии физических экспериментов с проволочном контуром, который моделирует узлы (т.е. гладкие замкнутые кривые в пространстве). Оказывается, что этот контур — очень умный: он во многих случаях умеет распутывать тривиальный узел в круглую окружность, выполнять т.н. движения Рейдемейстера, движения Маркова, фокус Уитни, и всегда минимизирует т.н. индекс Уитни. Во второй части лекции будет рассмотрен один из красивейших подходов к изучению математической теории узлов, основанный на использовании т.н. «энергии узлов».
Математика ≫ Видео 0 Ø
Алексей Сосинский
В алгоритмической теории информации колмогоровская сложность объекта (такого, как текст) есть мера вычислительных ресурсов, необходимых для точного определения этого объекта. Колмогоровская сложность также известна как описательная сложность, сложность Колмогорова — Хайтина, стохастическая сложность, алгоритмическая энтропия или алгоритмическая сложность.
Математика ≫ Видео 0 Ø
Алексей Сосинский
В лекции будет сказано, что такое узлы (и их родственники — зацепления, косы, ленты), но вместо соответствующих теорий, будут рассказаны некоторые яркие «внешние» применения этих понятий, т. е. приложения к другим наукам. А именно: Индекс зацепления двух кривых и электромагнетизм; Перестройки по заузленным лентам и опровержения первоначального варианта его знаменитой гипотезы; Косы и оправдание существования позитрона (и вообще антимира); Заузленные ДНК; Простейшее зацепление и расслоение Хопфа.
Математика ≫ Видео 0 Ø
Алексей Сосинский
Будет рассказано, что такое математическая теория узлов и зачем нужны их инварианты. Задача (трехмерная) о классификации узлов будет сведена к чисто комбинаторной двумерной задаче с помощью изящного инструмента — операций Райдемайстера. Затем будет показано, как вычисляется знаменитый инвариант узлов — полином Александера–Конвея. Будет построен (со всеми доказательствами) еще более знаментый инвариант узлов — полином Джонса, за который в 1992 году австралийский математик Воан Джонс получил медаль Фильдса. Это будет сделано с помощью т.н. скобки Кауфмана, т.е. с помощью соображений, тесно связанных со статистической физикой. Мы научимся вычислять этот полином и докажем ряд его свойств.
Математика ≫ Видео 0 Ø
Алексей Сосинский
Курс занятий посвящен тому, что в математике сделать нельзя. Но речь пойдет не о запрещенных действиях (типа деления на ноль или квадратуры круга), а об отсутствии общих методов для решения некоторых широких классов задач. Начиная от определения вычислимой функции (через машину Тюринга), мы узнаем про существование универсальной вычислимой функции, и как следствие – о существовании не вычислимых функций. Отсюда мы поймем, какие задачи никакой компьютер (даже сколь угодно мощный) решить не может в принципе. Затем мы определим «Колмогоровскую сложность» и изучим ряд ее «нехороших» свойств, именно, не вычислимость некоторых связанных с ней характеристик. Эти свойства сыграют решающую роль в доказательстве теоремы Гёделя о неполноте – одного из самых значительных научных открытий ХХ-го века.
Математика ≫ Видео 0 Ø
Алексей Сосинский
Теорема Гёделя, наряду с открытием теории относительности, квантовой механики и ДНК, обычно рассматривается как крупнейшее научное достижение ХХ века. Почему? В чем ее суть? Каково ее значение? Эти вопросы в своей лекции раскрывает Алексей Брониславович Сосинский, математик, профессор Независимого московского университета, офицер Ордена академических пальм Французской Республики, лауреат премии Правительства РФ в области образования 2012 года. В частности, были даны несколько разных ее формулировок, описаны три подхода к ее доказательству (Колмогорова, Чейтина и самого Гёделя), и объяснено ее значение для математики, физики, компьютерной науки и философии.
Математика ≫ Видео 0 Ø
Алексей Сосинский
В лекции будут обсуждаться примеры сингулярных (особых) мыльных пленок, натянутых на проволочные контуры сложной формы (узлы, каркас куба и тетраэдра, и др.) Будут проводится демонстрации соответствующих экспериментов с проволоками и мыльным растворам, и на экране будут показаны фотографии и компьютерная графика изображений результатов. Оказывается, что на пленках возникают только два тина особенностей — так называемые “тройные линии” и “шестикрылые бабочки”, удивительным образом совпадающие с особенностями “специальных спайнов” (играющих ключевую роль в работах С. Матвеева и его школы по классификации трехмерных многообразий). Цель лекции — привлечь внимание слушателей к созданию (пока еще не существующей) математической теории сингулярных минимальных поверхностей.
Математика ≫ Видео 0 Ø