x, y, z

Математика [3]

Сортировать:
<<< |1|2|3|4|5|6|7|8| >>>
ПубликацияРазделКомм.
Джордана Цепелевич
Всякая надежда на создание единой математической теории, амбициозного проекта, который был предложен математиком Давидом Гильбертом в 19 веке и продолжил существовать, поддерживаемый многими, в 20 столетии, рухнула. Основы математики были далеко не столь надежными, как того хотел бы Гильберт. А Гëдель своими теоремами ясно продемонстрировал, что любая система аксиом, какой бы обширной она ни была, уязвима для возникновения невосполнимых пробелов. Попытки же восполнить их созданием более полной системы породили бы только бóльшее количество утверждений без доказательств — так что и тут возникнет необходимость в усовершенствовании системы, и так далее до бесконечности. И случилось нечто странное: математики решили не обращать на это внимания. Они посчитали, что неполнота систем не имеет непосредственного влияния на их работу.
Математика 0 Ø
Наталья Карпушина
Знаете ли вы, почему в окружности 360 градусов, а не 180 или, скажем, не 300? Откуда пошла традиция делить окружность на равные части и почему было выбрано именно такое их число? Оказывается, этому делению мы обязаны вавилонянам. Считается, что они же изобрели простейший инструмент для измерения углов − транспортир. Но вот вопрос: как же древние сумели разделить окружность на равные части, не владея техникой геометрических построений и располагая лишь примитивными инструментами?
Математика 0 Ø
Некоторые ученые полагают, что наша Вселенная представляет собой гигантскую компьютерную симуляцию. Должны ли мы беспокоиться по этому поводу? Реальны ли мы? А как насчет меня лично? Раньше подобными вопросами задавались лишь философы. Ученые же пытались понять, что собой представляет наш мир, и объяснить его законы. Но появившиеся в последнее время соображения относительно устройства Вселенной ставят экзистенциальные вопросы и перед наукой. Некоторые физики, космологи и специалисты в области искусственного интеллекта подозревают, что мы все живем внутри гигантской компьютерной симуляции, принимая виртуальный мир за реальность.
Философия 0 Ø
Мария Саямова
Математика отличается прежде всего неопределенностью предмета исследования. Объект, который она изучает, имеет ускользающую природу: вроде бы математика не занимается исследованием реального мира, и в то же время без математики его понимание невозможно. Один из подходов к обоснованию предмета математики получил название математического платонизма. Насколько он плодотворен и полезен с когнитивной точки зрения?
Математика 0 Ø
Наталья Карпушина
Как выглядел простейший циркуль? Что такое коники Аполлония? По какой траектории летит пушечное ядро? На что похож параболический циркуль Леонардо да Винчи? Почему живописцы прошлого были неравнодушны к эллипсу?
Математика 0 Ø
Марина Егупова
С точки зрения математики обычный фотоснимок — это изображение на плоскости, полученное путём проектирования его из одной точки. Однако мы хотим отобразить реальность с максимальной достоверностью и поэтому ищем новые средства для демонстрации трёхмерности пространства и окружающих нас предметов.
Математика 0 Ø
В принципе, у троичной системы счисления было не меньше шансов, чем у двоичной. Кто знает, по какому пути развития пошел бы технический прогресс, если бы «трайты» одержали победу над «байтами». Как выглядели бы современные смартфоны или GPS-навигаторы, как отразилось бы значение «может быть» на их быстродействии?
Информатика, компьютерные науки 0 Ø
Михаил Цфасман
Московская математическая школа — легендарное явление в мировой науке. Десятки имен, сформировавшие современную математику. О том, как появилась эта научная школа и чем живет она сегодня, мы говорим по гамбургскому счету с доктором физико-математических наук, заведующим сектором алгебры и теории чисел Института проблем передачи информации имени Харкевича Российской академии наук Михаилом Цфасманом.
Математика ≫ Видео 0 Ø
Виктор Клепцын
Действительное число можно сколь угодно точно приблизить рациональными. А насколько хорошим может быть такое приближение – в сравнении с его сложностью? Например, оборвав десятичную запись числа x на k-й цифре после запятой, мы получим приближение x≈a/10^k с ошибкой порядка 1/10^k. И вообще, зафиксировав знаменатель q у приближающей дроби, мы точно можем получить приближение с ошибкой порядка 1/q. А можно ли сделать лучше? Знакомое всем приближение π≈22/7 даёт ошибку порядка 1/1000 – то есть явно сильно лучше, чем можно было бы ожидать. А почему? Повезло ли нам, что у π такое приближение есть? Оказывается, что для любого иррационального числа есть бесконечно много дробей p/q, приближающих его лучше, чем 1/q^2. Это утверждает теорема Дирихле – и мы начнём курс с её немного нестандартного доказательства.
Математика ≫ Видео 0 Ø
В 1850 году преподобный Томас Киркман, британский математик и настоятель прихода в Ланкашире, сформулировал невинно выглядящую головоломку в развлекательном журнале для любителей математики. Задачка выглядит простой, но если попробовать её решить, то сразу понимаешь, что это не так. В силу своей ложной простоты задача быстро стала знаменитой. Свои решения присылали любители математики, а учёные публиковали научные статьи с попыткой сформулировать общее решение для проблемы. В результате, эта головоломка помогла сформировать новое направление математики.
Математика 0 Ø
Сейчас многие математики, примыкающие к так называемому интуиционистскому направлению, отрицают доказательства, основанные на принципе исключённого третьего и на аксиоме произвольного выбора, хотя среди этих утверждений есть и классические теоремы математического анализа. Нет единства среди математиков и по вопросу о том, как относиться к доказательствам чисто математических теорем, полученных с помощью ЭВМ. Но ещё более глубокие противоречия разделяют учёных по таким вопросам, как определение движущих сил развития математической науки, выяснение причин «непостижимой эффективности» математики в физических науках, прогнозирование дальнейшего развития математики и оценка значимости тех или иных достижений.
Математика 0 Ø
Елена Чернова
«Грядущим поколениям ХХ век будет памятен лишь благодаря созданию теорий относительности, квантовой механики и хаоса... теория относительности разделалась с иллюзиями Ньютона об абсолютном пространстве-времени, квантовая механика развеяла мечту о детерминизме физических событий, и, наконец, хаос развенчал Лапласову фантазию о полной предопределенности развития систем». Эти слова известного американского историка и популяризатора науки Джеймса Глейка отражают огромную важность вопроса, который лишь вкратце освещается в статье, предлагаемой вниманию читателя. Наш мир возник из хаоса. Однако если бы хаос не подчинялся своим собственным законам, если бы в нем не было особой логики, он ничего не смог бы породить.
Математика 0 Ø
Исаак Яглом
Естественные науки — физика, химия, астрономия, биология, медицина... — изучают окружающий нас мир; гуманитарные — история, литература, филология, юриспруденция, социология... — человеческое общество, также представляющее собой реальность, поддающуюся наблюдениям и даже эксперименту; математика же изучает самоё себя. С этой, безусловно, самой основной точки зрения различие между математикой и «нематематикой» оказывается несравненно более глубоким, чем различие между естественными и гуманитарными дисциплинами.
Математика 0 Ø
Уильям Сойер
В книге «Прелюдия к математике» известного австралийского математика и популяризатора У. У. Сойера, вышедшей в 1965 году в издательстве «Просвещение», раскрывается существо математического мышления, показаны основные идеи и движущие силы математики. Автор остроумно и в занимательной форме показывает всю вздорность укоренившегося представления о математике как о скучной и формальной науке. Мы помещаем здесь сокращенный пересказ введения к этой книге.
Математика 0 Ø
Сколько лет двоичной системе счисления? Она, конечно, старше первых компьютеров − на самом деле, намного старше. Первооткрывателем ее для Запада в начале XVIII в. стал Готфрид Лейбниц. А вот жители одного из островов Полинезии знали двоичную систему за сотни лет до того.
Математика 0 Ø
Николай Горькавый
Началось с того, что царь Гиерон II пригласил Архимеда к себе во дворец, налил ему лучшего вина, спросил про здоровье, а потом показал золотую корону, изготовленную для правителя придворным ювелиром. — Я не разбираюсь в ювелирном деле, но разбираюсь в людях, — сказал Гиерон. — И думаю, что ювелир меня обманывает. Царь взял со стола слиток золота. — Я дал ему точно такой же слиток, и он сделал из него корону. Вес у короны и слитка одинаковый, мой слуга проверил это. Но меня не оставляют сомнения, не подмешано ли в корону серебро? Ты, Архимед, самый великий учёный Сиракуз, и я прошу тебя это проверить, ведь, если царь наденет фальшивую корону, над ним будут смеяться даже уличные мальчишки…
Разное 0 Ø
Стивен Вольфрам
В вычислительной математике обычно ставится конкретная вычислительная задача, которая затем решается с целью получить результат — в точности как типичный сеанс работы в Mathematica. В чистой математике, напротив, берутся некоторые математические объекты, результаты или структуры, формируются некоторые гипотезы относительно них и потом приводятся доказательства верности выдвинутых гипотез. Большое число чистых математиков продолжает делать всё точно также, как это делалось веками — от руки и на бумаге. Как же эффективно привнести технологии в такой рабочий процесс?
Математика 0 Ø
П. Дж. Коэн
Читатель безусловно ощутит горечь пессимизма в моих заметках. Математика подобна прометееву труду, который полон жизни, силы и привлекательности, но содержит в самом себе зерно разрушающего сомнения. К счастью, мы редко останавливаемся, чтобы обозреть положение дел и подумать об этих глубочайших вопросах.
Математика 0 Ø
Представьте себе, что на стол высыпана кучка совершенно одинаковых по виду монет, но вам сказали, что одна из этих монет — фальшивая. Она отличается от остальных монет по весу, но вам не сообщили, легче она или тяжелее. В вашем распоряжении имеются чашечные весы без гирь. Как нужно действовать, чтобы выделить эту монету и выяснить её тип (то есть узнать, легче она или тяжелее) за минимальное число взвешиваний?
Математика 0 Ø
Демьянов В. П.
О продуктивности Коши-математика свидетельствует целый ряд терминов, определений и понятий, вошедших в науку, таких, как признак Коши, критерий Коши, задачи Коши, интеграл Коши, уравнения Коши–Римана и Коши–Ковалевской, относящиеся к разным разделам математического анализа, математической физики, теории чисел, и других дисциплин. Всего же он написал 700 работ (по другим источникам 800), с неимоверной легкостью переходя от одной области научного знания к другой.
Математика 0 Ø
<<< |1|2|3|4|5|6|7|8| >>>