x, y, z

Математика [2]

Сортировать:
<<< |1|2|3|4|5|6|7| >>>
ПубликацияРазделКомм.
Александр Кириллов
О своем пути в математику, о первых поездках за рубеж, работе в США рассказал замечательный ученый, докт. физ.-мат. наук, профессор факультета математики Пенсильванского университета (США), главный научный сотрудник ИППИ РАН Александр Александрович Кириллов.
Математика 0 Ø
Владимир Тихомиров
В своей статье «Что такое математика» В. И. Арнольд писал: «Является ли математика перечислением следствий из произвольных аксиом или же ветвью естествознаия и теоретической физики, много обсуждался уже со времен Гильберта (придерживавшегося вслед за Декартом и, предвосхищая Бурбаки, первого мнения) и Пуанкаре (основателя современной математики, топологии, теории хаоса в динамических системах).» В лекции будет обсуждаться вопрос Арнольда, а заодно будет рассказано о самом Арнольде, а также о Николя Бурбаки, Давиде Гильберте, Рене Декарте и Анри Пуанкаре. И об их вкладе в науку.
Математика ≫ Видео 0 Ø
Я давно хотела попасть в Летнюю школу «Современная математика» возле Дубны, которую вот уже 12-й год проводят Московский центр непрерывного изучения математики и Математический институт РАН. Как-то не получалось. В 2009 году я собрала отклики преподавателей и организаторов о Школе, которые говорили о том, как там здорово и интересно. Меня туда приглашал один из ее организаторов, человек, без сомнения, бывший душой Школы — Владимир Игоревич Арнольд. В этом году я решила, что надо, наконец, посмотреть, где же математики проводят лучшую часть лета, и, может быть, найти то место, где находится часть души Арнольда.
Математика 0 Ø
Сергей Рукшин
О том, как строить работу с одаренными детьми, на каких принципах удается воспитывать столь одаренных математиков как Григорий Перельман, Станислав Смирнов и другие, мы побеседовали с Сергеем Рукшиным, заслуженным учителем РФ, канд. физ.-мат. наук, членом Общественного совета при Министерстве образования и науки, основателем и директором Санкт-Петербургского городского математического центра для одаренных школьников, доцентом РГПУ им. А.И. Герцена. Беседовала Наталия Демина.
Математика 0 Ø
Владимир Успенский, Ольга Митина
Разговор о преподавании математики студентам гуманитарных специальностей вузов. Какую роль играет математика в образовании психологов или филологов? Не является ли она ненужной, дополнительной нагрузкой или, напротив, математика помогает по-другому посмотреть на гуманитарные дисциплины и увидеть в них красоту и строгость? В студии Радио Свобода: Ольга Митина, кандидат психологических наук, старший научный сотрудник факультета психологии МГУ и Владимир Успенский, доктор физико-математических наук, профессор мехмата МГУ.
Математика 0 Ø
Математики решили задачу о поведении мыльной пленки в гибком каркасе. Эта задача — более сложный вариант классической задачи Плато, в которой требуется доказать, что для любого замкнутого жесткого каркаса в пространстве найдется поверхность минимальной площади с границей на каркасе. Именно такую минимальную поверхность повторяет мыльная пленка, которая образуется, если окунуть каркас в мыльный раствор.
Математика 0 Ø
Совсем недавно математики рассказали о решении важной задачи из теории минимальных поверхностей — о поведении мыльной пленки на гибком каркасе. Как часто бывает в физике, эта теоретическая задача связана с гораздо более широким кругом явлений, чем простое возникновение мыльных пленок: от динамики молекул до гравитационных полей черных дыр. Мы предлагаем вам небольшой экскурс в одну из самых красивых задач математики — задачу Плато о минимальных поверхностях.
Математика 0 Ø
В Евклидовой геометрии любое утверждение либо ложно, либо истинно, и третьего не дано. И в начале ХХ века математики наивно полагали, что такая же ситуация должна наблюдаться в любой логически непротиворечивой системе. И тут в 1931 году какой-то венский очкарик — математик Курт Гёдель — взял и опубликовал короткую статью, попросту опрокинувшую весь мир так называемой «математической логики». Гёдель попросту доказал следующее удивительное свойство любой системы аксиом: всякая система математических аксиом начиная с определенного уровня сложности либо внутренне противоречива, либо неполна.
Математика 0 Ø
Джордана Цепелевич
Всякая надежда на создание единой математической теории, амбициозного проекта, который был предложен математиком Давидом Гильбертом в 19 веке и продолжил существовать, поддерживаемый многими, в 20 столетии, рухнула. Основы математики были далеко не столь надежными, как того хотел бы Гильберт. А Гëдель своими теоремами ясно продемонстрировал, что любая система аксиом, какой бы обширной она ни была, уязвима для возникновения невосполнимых пробелов. Попытки же восполнить их созданием более полной системы породили бы только бóльшее количество утверждений без доказательств — так что и тут возникнет необходимость в усовершенствовании системы, и так далее до бесконечности. И случилось нечто странное: математики решили не обращать на это внимания. Они посчитали, что неполнота систем не имеет непосредственного влияния на их работу.
Математика 0 Ø
Наталья Карпушина
Знаете ли вы, почему в окружности 360 градусов, а не 180 или, скажем, не 300? Откуда пошла традиция делить окружность на равные части и почему было выбрано именно такое их число? Оказывается, этому делению мы обязаны вавилонянам. Считается, что они же изобрели простейший инструмент для измерения углов − транспортир. Но вот вопрос: как же древние сумели разделить окружность на равные части, не владея техникой геометрических построений и располагая лишь примитивными инструментами?
Математика 0 Ø
Некоторые ученые полагают, что наша Вселенная представляет собой гигантскую компьютерную симуляцию. Должны ли мы беспокоиться по этому поводу? Реальны ли мы? А как насчет меня лично? Раньше подобными вопросами задавались лишь философы. Ученые же пытались понять, что собой представляет наш мир, и объяснить его законы. Но появившиеся в последнее время соображения относительно устройства Вселенной ставят экзистенциальные вопросы и перед наукой. Некоторые физики, космологи и специалисты в области искусственного интеллекта подозревают, что мы все живем внутри гигантской компьютерной симуляции, принимая виртуальный мир за реальность.
Философия 0 Ø
Мария Саямова
Математика отличается прежде всего неопределенностью предмета исследования. Объект, который она изучает, имеет ускользающую природу: вроде бы математика не занимается исследованием реального мира, и в то же время без математики его понимание невозможно. Один из подходов к обоснованию предмета математики получил название математического платонизма. Насколько он плодотворен и полезен с когнитивной точки зрения?
Математика 0 Ø
Наталья Карпушина
Как выглядел простейший циркуль? Что такое коники Аполлония? По какой траектории летит пушечное ядро? На что похож параболический циркуль Леонардо да Винчи? Почему живописцы прошлого были неравнодушны к эллипсу?
Математика 0 Ø
Марина Егупова
С точки зрения математики обычный фотоснимок — это изображение на плоскости, полученное путём проектирования его из одной точки. Однако мы хотим отобразить реальность с максимальной достоверностью и поэтому ищем новые средства для демонстрации трёхмерности пространства и окружающих нас предметов.
Математика 0 Ø
В принципе, у троичной системы счисления было не меньше шансов, чем у двоичной. Кто знает, по какому пути развития пошел бы технический прогресс, если бы «трайты» одержали победу над «байтами». Как выглядели бы современные смартфоны или GPS-навигаторы, как отразилось бы значение «может быть» на их быстродействии?
Информатика, компьютерные науки 0 Ø
Михаил Цфасман
Московская математическая школа — легендарное явление в мировой науке. Десятки имен, сформировавшие современную математику. О том, как появилась эта научная школа и чем живет она сегодня, мы говорим по гамбургскому счету с доктором физико-математических наук, заведующим сектором алгебры и теории чисел Института проблем передачи информации имени Харкевича Российской академии наук Михаилом Цфасманом.
Математика ≫ Видео 0 Ø
Виктор Клепцын
Действительное число можно сколь угодно точно приблизить рациональными. А насколько хорошим может быть такое приближение – в сравнении с его сложностью? Например, оборвав десятичную запись числа x на k-й цифре после запятой, мы получим приближение x≈a/10^k с ошибкой порядка 1/10^k. И вообще, зафиксировав знаменатель q у приближающей дроби, мы точно можем получить приближение с ошибкой порядка 1/q. А можно ли сделать лучше? Знакомое всем приближение π≈22/7 даёт ошибку порядка 1/1000 – то есть явно сильно лучше, чем можно было бы ожидать. А почему? Повезло ли нам, что у π такое приближение есть? Оказывается, что для любого иррационального числа есть бесконечно много дробей p/q, приближающих его лучше, чем 1/q^2. Это утверждает теорема Дирихле – и мы начнём курс с её немного нестандартного доказательства.
Математика ≫ Видео 0 Ø
В 1850 году преподобный Томас Киркман, британский математик и настоятель прихода в Ланкашире, сформулировал невинно выглядящую головоломку в развлекательном журнале для любителей математики. Задачка выглядит простой, но если попробовать её решить, то сразу понимаешь, что это не так. В силу своей ложной простоты задача быстро стала знаменитой. Свои решения присылали любители математики, а учёные публиковали научные статьи с попыткой сформулировать общее решение для проблемы. В результате, эта головоломка помогла сформировать новое направление математики.
Математика 0 Ø
Сейчас многие математики, примыкающие к так называемому интуиционистскому направлению, отрицают доказательства, основанные на принципе исключённого третьего и на аксиоме произвольного выбора, хотя среди этих утверждений есть и классические теоремы математического анализа. Нет единства среди математиков и по вопросу о том, как относиться к доказательствам чисто математических теорем, полученных с помощью ЭВМ. Но ещё более глубокие противоречия разделяют учёных по таким вопросам, как определение движущих сил развития математической науки, выяснение причин «непостижимой эффективности» математики в физических науках, прогнозирование дальнейшего развития математики и оценка значимости тех или иных достижений.
Математика 0 Ø
Елена Чернова
«Грядущим поколениям ХХ век будет памятен лишь благодаря созданию теорий относительности, квантовой механики и хаоса... теория относительности разделалась с иллюзиями Ньютона об абсолютном пространстве-времени, квантовая механика развеяла мечту о детерминизме физических событий, и, наконец, хаос развенчал Лапласову фантазию о полной предопределенности развития систем». Эти слова известного американского историка и популяризатора науки Джеймса Глейка отражают огромную важность вопроса, который лишь вкратце освещается в статье, предлагаемой вниманию читателя. Наш мир возник из хаоса. Однако если бы хаос не подчинялся своим собственным законам, если бы в нем не было особой логики, он ничего не смог бы породить.
Математика 0 Ø
<<< |1|2|3|4|5|6|7| >>>