x, y, z

Математика ≫ Видео [2]

Сортировать:
<<< |1|2|3|4|5|6|…|19| >>>
ПубликацияРазделКомм.
Иван Аржанцев
В этом курсе изучается такой замечательный и вполне элементарный объект, как конечномерные коммутативные ассоциативные алгебры над комплексными числами. Здесь достаточно легко доказать первые структурные результаты, но получить полную классификацию едва ли возможно. Мы обсудим различные техники работы с конечномерными алгебрами (максимальные идеалы и локальные алгебры, фильтрации и градуировки, последовательность Гильберта-Самюэля и цоколь) и получим явное описание алгебр малых размерностей. Оказывается, конечномерные алгебры тесно связаны с действиями с открытой орбитой коммутативных групп матриц на аффинных и проективных пространствах. Мы объясним эту связь. В процессе объяснения естественно возникнут такие понятия как экспонента линейного оператора, представление группы и циклический модуль, алгебра Ли и ее универсальная обертывающая.
Математика ≫ Видео 0 Ø
Антон Джамай
Целью этого элементарного курса, рассчитанного на школьников, является познакомить слушателей с некоторыми основными и очень красивыми идеями современной абстрактной алгебры. Начиная с элементарных примеров, мы введем понятия группы, кольца, и поля, и заодно посмотрим на некоторые неожиданные свойства простых уравнений в кольцах. После этого мы рассмотрим разные примеры групп, таких как группы симметрий правильных многоугольников и многогранников, или группы перестановок. Мы увидим как можно записать операцию в группе с помощью таблиц Кэли, и посмотрим на более наглядное представление структуры группы с помощью диаграмм Кэли. Мы также рассмотрим примеры действия групп и связанные с этим понятия, а также некоторые красивые приложения (такие как счетная лемма Бернсайда).
Математика ≫ Видео 0 Ø
Михаил Раскин
Теория игр — наука, изучающая принятие решений, особенно принятие решений в условиях зависимости достигаемого результата от действий других участников процесса. При этом «счастье для всех, даром и пусть никто не уйдёт обиженным» как правило невозможно по правилам — хотя ещё обиднее, когда оно возможно, но заведомо не случится. Изучаются же в каком-то смысле «достижимые» и «устойчивые» ситуации — так называемые равновесия. В интересующих нас играх часто можно выписать все сценарии развития событий, но после этого всё равно ещё остаются вопросы. С этой точки зрения шахматы одновременно слишком сложны — много позиций — и слишком просты — полный перебор сразу определил бы оптимальную стратегию для каждой позиций. Так как курс не построен вокруг одного понятия или утверждения, по пожеланиям слушателей возможны значительные изменения программы.
Математика ≫ Видео 0 Ø
Николай Адрианов
В этом курсе мы познакомимся с замечательной теорией NP-полных задач. Проблема (не)равенства классов P и NP — одна из «задач тысячелетия», за каждую из которых объявлен приз в миллион долларов. Мы разберемся в определении класса NP и научимся доказывать NP-полноту различных комбинаторных задач (классические теоремы Кука–Левина и Карпа). Особое внимание уделим задаче выполнимости булевых формул SAT. Мы поиграем с программами, решающими эту задачу, разберем какие алгоритмы они используют, как результатом их работы может быть доказательство, допускающее автоматическую проверку. Научимся сводить логические головоломки и математические задачи к SAT, поговорим о судоку, задачах теории Рамсея, недавнем продвижении в задаче о хроматическом числе плоскости и о «самом большом математическом доказательстве».
Математика ≫ Видео 0 Ø
Андрей Соболевский
В 1948 году американский математик Клод Шеннон опубликовал статью «Математическая теория информации». Тогда, 70 лет назад, эта работа легла в основу современной теории информации и принесла ученому мировую славу. А математика с тех пор стала влиять на жизнь людей в реальном, а не отложенном времени. О том, где сегодня лежит граница между полезной и бесполезной математикой, мы решили спросить директора Института проблем передачи информации имени Харкевича Российской академии наук Андрея Соболевского.
Математика ≫ Видео 0 Ø
Лев Беклемишев
Какую часть математических доказательств можно поручить компьютеру? Какие существуют виды интерактивных систем поиска математических доказательств? В чем заключается теорема о четырех красках? И как она была доказана? Математик Лев Беклемишев о теории множеств, интерактивных системах и проблеме о четырех красок.
Математика ≫ Видео 0 Ø
Беклемишев Лев
В чем заключается аксиоматический метод? Как развивалось понятие аксиомы? Кем был разработан аксиоматический метод? Какое место он занимает в математике? И какой критике подвергается этот метод? Математик Лев Беклемишев о неевклидовой геометрии, системе аксиом Гильберта и смысле в математике.
Математика ≫ Видео 0 Ø
Николай Андреев
Почему крышки люков делают круглыми? Что такое фигура постоянной ширины? Какими интересными свойствами обладает треугольник Рело и как его построить? Почему английская 20-пенсовая монета имеет такую необычную форму? Как и чем сверлят квадратные отверстия? Что представляют собой фигуры постоянной ширины в трёхмерном пространстве и какая открытая математическая проблема с ними связана?
Математика ≫ Видео 0 Ø
Николай Андреев
Почему домохозяйки трясут баночки с горохом? Какая упаковка шаров является наиболее плотной в пространствах различных размерностей? Что такое «kissing number» и был ли прав Ньютон, не захотев согласиться на число 13? Какое практическое применение нашло решение задачи о наиболее плотной упаковке шаров в 8-мерном пространстве в 20 веке? Рассказывает Николай Николаевич Андреев кандидат физико-математических наук, заведующий лабораторией популяризации и пропаганды математики Математического института им. В. А. Стеклова РАН.
Математика ≫ Видео 0 Ø
Дмитрий Горбунов
В первой половине лекции мы обсудим наблюдаемые, дающие представление о составе и истории развития Вселенной и познакомимся со Стандартной космологической моделью. Вторая половина лекции будет посвящена обсуждению разных аномалий и нестыковок при попытках дальнейшего уточнения физических параметров, с чем пришлось столкнуться в последние годы. Означает ли это, что мы подошли к следующей ступени понимания физики и космологии, или это рубеж, определяемый систематическими погрешностями используемых экспериментальных методов, пока неизвестно. Я постараюсь показать, какие математические задачи возникают в космологии.
Космология, астрономия ≫ Видео 0 Ø
Алексей Бондал
Я постараюсь объяснить базисные проблемы и идеи гомологической алгебры и современную их интерпретацию с помощью производных категорий. Затем расскажу как надо думать об алгебраических многообразиях, чтобы применять методы гомологической алгебры и теории категорий к алгебраической геометрии. В качестве примера, объясню как можно описывать расслоения на проективных пространствах с помощью разбиений вещественного тора.
Математика ≫ Видео 0 Ø
Александр Веселов
Рассмотрим квадратичную форму Q от двух переменных с целыми коэффициентами и зададимся вопросом, какие значения она может принимать на целочисленной решетке. В частном случае стандартной евклидовой формы это классический вопрос о том, когда заданное натуральное число представляется как сумма двух квадратов, исследованный Гауссом. Около 20 лет назад английский математик Джон Конвей предложил геометрический подход к этому вопросу, используя плоское бинарное дерево. Получаемое описание называется топографом формы. В случае когда форма принимает как положительные, так и отрицательные значения, они разделяются бесконечным путем на этом дереве, называемым рекой Конвея. Я расскажу, как река Конвея связана с парусом Арнольда из геометрической теории цепных дробей на целочисленной решетке, восходящей к Клейну.
Математика ≫ Видео 0 Ø
Александр Гайфуллин
Классическая теорема Бойяи–Гервина (1830-е годы) утверждает, что любые два многоугольника равной площади равносоставлены друг с другом: первый многоугольник можно разрезать на конечное число многоугольных частей и затем сложить из этих частей второй многоугольник. Ещё Гаусс задавал вопрос, верно ли аналогичное утверждение для многогранников. А именно, его интересовало, можно ли доказать стандартную формулу для объёма пирамиды (одна треть произведения длины высоты на площадь основания) без использования предельного перехода, то есть разбив пирамиду на конечное число кусков, из которых можно сложить прямоугольный параллелепипед.
Математика ≫ Видео 0 Ø
Эдуард Френкель
Как увидеть красоту математики — рассказывает Эдуард Владимирович Френкель, советский и американский математик, работающий в сферах теории представлений, алгебраической геометрии и математической физики. В настоящее время он работает профессором математики в Калифорнийском университете в Беркли. Автор книги "Любовь и математика"
Математика ≫ Видео 0 Ø
Сергей Нечаев, Алексей Семихатов
Вопрос науки
В последние годы во всем мире ученые активно заняты расчетами вероятности случайных событий. Эта область математики буквально переживает бум. Математики строят графики и пишут формулы для расчета вероятности случайных событий. Для чего? Что это дает науке и какой от этого прок простому обывателю? Какие выводы можно сделать на основе этих вычислений? Что они смогли выяснить, помимо этого? Узнаем на наглядных примерах. Гость программы: Сергей Константинович Нечаев — доктор ф-м наук, в.н.с. Лаботратории математической физики Физического института им. П.Н. Лебедева РАН, директор российско-французского Междисциплинарного научного центра Понселе.
Математика ≫ Видео 0 Ø
Алексей Савватеев, Алексей Семихатов
Вопрос науки
Зачем математики придумывают всё новые неразрешимые задачи? Зачем нужна современная математика? Среди ученых нет ни одного, кто разбирался бы во всех областях современных математических наук. А математики придумывают все новые и новые неразрешимые задачи, и потом десятилетиями бьются над ними. Зачем все это? И какое отношение математика имеет к нашей жизни? Гость программы доктор физико-математических наук Алексей Савватеев. Беседует Алексей Семихатов.
Математика ≫ Видео 0 Ø
Валерий Опойцев
Идеальный газ. Уравнение состояния газа. Взаимосвязь давления, температуры и объёма. Механизмы рождения макропараметров в рамках «молекулярного бильярда». Первое начало термодинамики как закон сохранения энергии. Вывод уравнения Бернулли. Энтропия и второе начало термодинамики. Тепловые машины и цикл Карно. Энтропия информационная. Энтропия как неопределённость. Аксиоматический подход к определению энтропии. Принцип максимума энтропии. Подход статистической физики за пределами термодинамики.
Физика ≫ Видео 0 Ø
Александр Буфетов
В стандартной интерпретации гёделева неразрешимая формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в системе S. Таким образом, A является аналогом парадокса лжеца. Рассуждения Гёделя в целом очень похожи на парадокс Ришара. Более того, для доказательства существования невыводимых утверждений может быть использован любой семантический парадокс.
Математика ≫ Видео 0 Ø
Гаянэ Панина
Если у (обычного плоского) квадрата склеить противолежащие стороны, то получится тор с плоской метрикой, то есть каждый достаточно малый участок тора будет устроен как кусочек евклидовой плоскости. Если квадрат заменить на прямоугольник или параллелограмм, аналогичная склейка тоже даст тор с плоской метрикой, но про него разумно сказать — это другой тор, не изометричный первому. Здесь история о поверхностях с плоской метрикой заканчивается, так как никакую другую поверхность (с плоской метрикой) кроме этих торов из куска евклидовой плоскости склеить нельзя. Поэтому мы евклидову плоскость заменим на плоскость Лобачевского (с ней больше свободы!) и определим пространство Тейхмюллера как пространство, элементы которого суть все возможные способы склеить поверхность рода g (т.е. сфера с g ручками) из гиперболической развертки, то есть, из некоторого куска гиперболической плоскости.
Математика ≫ Видео 0 Ø
Михаил Раскин
Иногда мы хотим доказать, что какой-нибудь объект существует. Разумеется, можно медленно и методично объект построить. Но это что-то делать надо, а хочется получить кое-что задаром. Поэтому мы просто возьмём случайный объект и заметим, что он подходит с ненулевой вероятностью. Это позволяет избежать занудной конструкции. Заодно можно спрятать в доказательстве незаметную ошибку. Для понимания курса нужно будет знать определение независимых событий. Понимать, что это такое, не обязательно, всё равно в ходе курса такое понимание (или только его иллюзию?) можно будет утратить.
Математика ≫ Видео 0 Ø
<<< |1|2|3|4|5|6|…|19| >>>