x, y, z

Магия марковских троек // Александр Веселов ≫ Похожее [4]

Публикации: 204
<<< |1|2|3|4|5|6|7|8|…|11| >>>
  • Владимир Павлов
    Вводные понятия. Цель физики. Базовые принципы и понятия. Понятие пространства-времени. Принципы симметрии пространства-времени. Динамический принцип. Действие. Функция Лагранжа. Уравнения Эйлера–Лагранжа. Законы сохранения. Теорема Нетер. Энергия, импульс, момент. Задача Кеплера. Модели. Гамильтонов формализм. Отображение Лежандра. Функция Гамильтона. Уравнения Гамильтона. Скобка Пуассона. Инвариантная формулировка механики.
  • Владимир Арнольд
    Для случайного распределения k точек на целочисленной окружности длины два «параметра стохастичности» β и λ были определены (независимо друг от друга) А.Н. Колмогоровым в 1933 году и В.И. Арнольдом в 2003 году. На занятиях будет показано, что эти параметры, кажущиеся независимыми характеристиками поля случайных точек, становятся функционально зависимыми, когда их значения усреднены по малым флуктуациям точек поля.
  • Михаил Раскин
    Иногда мы хотим доказать, что какой-нибудь объект существует. Разумеется, можно медленно и методично объект построить. Но это что-то делать надо, а хочется получить кое-что задаром. Поэтому мы просто возьмём случайный объект и заметим, что он подходит с ненулевой вероятностью. Это позволяет избежать занудной конструкции. Заодно можно спрятать в доказательстве незаметную ошибку. Для понимания курса нужно будет знать определение независимых событий. Понимать, что это такое, не обязательно, всё равно в ходе курса такое понимание (или только его иллюзию?) можно будет утратить.
  • Виктор Клепцын
    Лекцию читает Клепцын Виктор Алексеевич. Летняя школа «Современная математика», г. Дубна. 29 июля 2017 г.
  • Михаил Раскин
    Пользуясь цифрами 0 и 1, несложно записать натуральное число. Сложение в столбик позволяет прибавить к этому числу единицу. Такой способ записи и изменения числа требует в некоторых ситуациях прочитать и изменить все цифры. А если число большое и мы хотим читать и писать поменьше цифр, но можем быстро запросить любые цифры числа «вразбивку»? Разумеется, придётся изменить представление числа. С середины 20-го века известны коды Грея; нам всё равно потребуется иногда читать число целиком, зато менять надо будет лишь по одной цифре за раз. А можно ли прибавить к числу единицу, не читая всего числа? Оказывается, можно.
  • Дмитрий Аносов
    Теорема Шарковского, доказанная в 1960-х гг., даёт ответ на вопрос: как для непрерывного отображения отрезка в себя связано наличие периодических точек различных периодов? Эта теорема была первым общим результатом о динамических системах, получающихся при итерировании отображений отрезка в себя. Хотя эта «одномерная динамика» кажется чем-то весьма специальным, подобные отображения возникают в некоторых вопросах естествознания и техники, а также играют важную вспомогательную роль при чисто теоретических исследованиях более сложных динамических систем.
  • Михаил Тихонов
    Бывают объекты непрерывные, а бывают дискретные. Например, размерность пространства. Она дискретна: пространства бывают одномерные, двумерные, трехмерные… А вот размерности «полтора» не бывает. Или бывает? Оказывается, дискретные объекты иногда можно обобщить до непрерывных, и на первой половине курса мы разберем несколько конкретных примеров. Начав с совсем тривиальной арифметики, мы быстро дойдем до таких «странных» вещей, как дробные производные, а на второй лекции разберем красивый пример из алгебраической геометрии. Эти примеры проиллюстрируют один общий рецепт нетривиальных обобщений: если суметь переговорить привычные понятия на другом языке, то «сложные» операции могут стать простыми, и наоборот.
  • Иван Панин
    В курсе будет рассказано о замечательной теории, созданной В. Воеводским. В частности, будут даны и мотивированы определения гомологий Суслина, мотивных гомологий и когомологий Воеводского. Будет дана конструкция его категории мотивов алгебраических многообразий. Все эти построения опираются на понятия «многозначных» отображений и пучков. Оба последние понятия будут введены, пояснены и снабжены примерами. От слушателей предполагается знание того, что такое поле, векторное пространство, абелева группа и умение работать с многочленами нескольких переменных.
  • Владимир Арнольд
    Лекцию читает Арнольд Владимир Игоревич (1937–2010), доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна, 20 июля 2007 г.
  • Владимир Тихомиров
    Однажды в Доме ученых мне удалось организовать диспут на тему «Развитие геометрии в двадцатом столетии». Естественно возник вопрос: а что такое геометрия? Что произошло с геометрией в прошлом веке? Геометрия ныне одна из многих? Кого из наших современников можно назвать великим геометром?
  • Иван Ященко
    На Московской математической олимпиаде был предложен «дискретный» вариант теоремы о неподвижной точки внутри замкнутой траектории векторного поля: В некоторых клетках квадрата 20×20 стоит стрелочка в одном из четырёх направлений. На границе квадрата все стрелочки смотрят вдоль границы по часовой стрелке (см. рис.). Кроме того, стрелочки в соседних (возможно, по диагонали) клетках не смотрят в противоположных направлениях. Докажите, что найдётся клетка, в которой стрелочки нет. Разбирая 3–5 решений этой задачи, мы на наглядном уровне увидим теорему Жордана, индекс векторного поля и многое другое.
  • Юрий Бурман
    Программа курса: 1) Классическая механика: как движется груз на пружине? 2) Оптика: почему угол падения равен углу отражения? 3) Интеграл Фейнмана: как перемещаться по всем путям сразу? 4) Уравнение Шрёдингера: почему энергия делится на порции (кванты)? Предполагается, что слушатели владеют искусством замены переменной в интеграле или готовы быстро этому выучиться.
  • Алексей Семёнов
    Основные достижения математической логики относятся к математическим исследованиям математических рассуждений (эти исследования даже назвали метаматематикой). Однако методами математической логики можно изучать человеческие рассуждения не только из области математики. При построении математических моделей таких рассуждений используются, в частности, модальные логики. Самыми известными среди них являются логики возможности и необходимости. Для строящихся при этом логических языков определяются: семантика, т.н. «возможных миров» (семантика Крипке) и исчисление (аксиоматическая система), позволяющее формализовать рассуждения. Во многих случаях удаётся достичь полного соответствия между семантикой и исчислением (совпадения истинности и выводимости). В лекции будут приведены некоторые примеры модальных логик и доказано указанное соответствие для одной из них — естественной и хорошо известной.
  • Армен Сергеев
    Как следует из названия, речь пойдет о взаимодействии математики и физики в прошлом и настоящем. Указанное взаимодействие пережило ряд кризисов. Один из них, в начале ХХ-го века, привел к созданию квантовой механики. Практически одновременно в математике возник математический эквивалент квантовой механики — функциональный анализ. Другой кризис, возникший во второй половине ХХ-го века, связан с квантовой теорией поля и до сих пор не преодолен. Главная причина состоит в отсутствии адекватного математического аппарата. Эти и другие проблемы взаимодействия математики и физики будут рассмотрены в лекции.
  • Алексей Семёнов
    Высказывания математического языка (в том числе, содержащие переменные, от значения которых зависит истинность утверждений) можно записывать на формальном языке математической логики. (Например, можно использовать значок ∀ вместо выражения «для всех».) Однако даже и без точного описания языка математической логики (которое, впрочем, будет дано) можно понять, что значит объяснить (выразить) одно из свойств чисел через другое, например, выразить свойство «быть простым числом» через свойство «делиться». В лекции будут рассмотрены примеры задач, относящихся к выразимости и невыразимости. Среди высказываний математического языка можно выделить те, которые не содержать переменных и называть их утверждениями. Было бы хорошо иметь общий способ, пусть даже и очень громоздкий, который про любое утверждение, касающееся чисел (или иных математических объектов) и отношений между ними, позволяет установить, истинно оно или ложно. Будут приведены примеры, когда такой способ есть, и когда его нет.
  • Михаил Раскин
    Теория игр — наука, изучающая принятие решений, особенно принятие решений в условиях зависимости достигаемого результата от действий других участников процесса. При этом «счастье для всех, даром и пусть никто не уйдёт обиженным» как правило невозможно по правилам — хотя ещё обиднее, когда оно возможно, но заведомо не случится. Изучаются же в каком-то смысле «достижимые» и «устойчивые» ситуации — так называемые равновесия. В интересующих нас играх часто можно выписать все сценарии развития событий, но после этого всё равно ещё остаются вопросы. С этой точки зрения шахматы одновременно слишком сложны — много позиций — и слишком просты — полный перебор сразу определил бы оптимальную стратегию для каждой позиций. Так как курс не построен вокруг одного понятия или утверждения, по пожеланиям слушателей возможны значительные изменения программы.
  • Николай Адрианов
    В этом курсе мы познакомимся с замечательной теорией NP-полных задач. Проблема (не)равенства классов P и NP — одна из «задач тысячелетия», за каждую из которых объявлен приз в миллион долларов. Мы разберемся в определении класса NP и научимся доказывать NP-полноту различных комбинаторных задач (классические теоремы Кука–Левина и Карпа). Особое внимание уделим задаче выполнимости булевых формул SAT. Мы поиграем с программами, решающими эту задачу, разберем какие алгоритмы они используют, как результатом их работы может быть доказательство, допускающее автоматическую проверку. Научимся сводить логические головоломки и математические задачи к SAT, поговорим о судоку, задачах теории Рамсея, недавнем продвижении в задаче о хроматическом числе плоскости и о «самом большом математическом доказательстве».
  • Иван Аржанцев
    Знакомая большинству из вас формула Лейбница утверждает, что (fg)′=f′g+fg′. А какие ещё операции обладают аналогичным свойством? Задавшись этим вопросом, естественно определить дифференцирование алгебры А как такое линейное отображение D из A в A, что D(fg)=D(f)g+fD(g) для любых f,g ∈ A. В этом курсе мы поговорим о дифференцированиях коммутативных алгебр, в первую очередь, алгебры многочленов от многих переменных. Хотелось бы описать все дифференцирования и изучить их свойства. Начала этой теории вполне элементарны. В то же время дифференцирования тесно связаны со сложными задачами алгебраической геометрии, теории групп преобразований и теории представлений.
  • Евгений Смирнов
    Исчислительная геометрия занимается подсчетом числа геометрических объектов, удовлетворяющих данных условиям. Первой задачей исчислительной геометрии принято считать задачу Аполлония (III в. до н.э.) о числе окружностей, касающихся трех данных окружностей. Как известно всем любителям геометрии, таких окружностей может быть не более восьми, и все их можно построить циркулем и линейкой. С точки зрения проективной геометрии окружности можно рассматривать как коники (кривые второго порядка) на комплексной проективной плоскости, проходящие через две фиксированные бесконечно удаленные точки. Поэтому задача Аполлония есть задача о подсчете числа коник, заданных пятью условиями (прохождение через две точки и касание трех коник). В 1848 году Якоб Штейнер обобщил эту задачу: он предложил найти число коник, касающихся пяти данных коник.
  • Дмитрий Аносов
    Как геометрические соображения помогают понять свойства решений дифференциальных уравнений. С этим и связаны слова «то решаем, то рисуем» в названии лекции. Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых достижениях XX века, включая понимание механизма возникновения «хаоса» в поведении детерминированных объектов.
<<< |1|2|3|4|5|6|7|8|…|11| >>>