x, y, z

Магия марковских троек // Александр Веселов ≫ Похожее [3]

Публикации: 204
<<< |1|2|3|4|5|6|7|…|11| >>>
  • Фомин С. В.
    В брошюре рассказывается об истории возникновения, свойствах и применении различных систем счисления: десятичной, двоичной и некоторых других. В связи с двоичной системой счисления даются элементарные сведения о вычислительных машинах.
  • В 1994 году английский математик Эндрю Джон Уайлс опубликовал доказательство Великой теоремы Ферма, которое, после некоторых доработок, было признано исчерпывающим. Доказательство заняло более ста журнальных страниц и основывалось на использовании современного аппарата высшей математики, который в эпоху Ферма разработан не был. Так что же тогда имел в виду Ферма, оставляя на полях книги сообщение о том, что доказательство им найдено? Большинство математиков, с которыми я беседовал на эту тему, указывали, что за века накопилось более чем достаточно некорректных доказательств Великой теоремы Ферма, и что, скорее всего, сам Ферма нашел подобное доказательство, однако не сумел усмотреть в нем ошибку. Впрочем, не исключено, что все-таки имеется какое-то короткое и изящное доказательство Великой теоремы Ферма, которое никто до сих пор не нашел.
  • Дмитрий Орлов
    Начав с основной теоремы арифметики, мы расскажем про АВС-гипотезу, которая была сформулирована в 1985 году и быстро стала одной из центральных проблем в теории чисел из-за её связей с другими нерешёнными задачами, а также из-за того, что многие уже доказанные известные результаты были бы её следствиями.
  • 15 марта стало известно, что премию Абеля в 2016 году получит Эндрю Уайлз за доказательство гипотезы Таниямы-Симуры для полустабильных эллиптических кривых и следующее из этой гипотезы доказательство великой теоремы Ферма. В настоящее время премия составляет 6 миллионов норвежских крон, то есть примерно 50 миллионов рублей. По словам Уайлса, присуждение премии стало для него «полной неожиданностью». Вручение премии — прекрасный повод вспомнить несколько историй, связанных с теоремой Ферма.
  • Алексей Савватеев
    Теория Галуа — раздел алгебры, позволяющий переформулировать определенные вопросы теории полей на языке теории групп, делая их в некотором смысле более простыми. Теория Галуа даёт единый элегантный подход к решению классических задач: какие фигуры можно построить циркулем и линейкой? какие алгебраические уравнения разрешимы с помощью стандартных алгебраических операций (сложение, вычитание, умножение, деление и извлечение корня)?
  • BBC
    Как «единица» помогла построить первые города и великие империи? Как вдохновляла выдающиеся умы человечества? Какую роль в появлении денег она сыграла? Как «единица» объединилась с нулем, чтобы править современным миром? История единицы неразрывно связана с историей европейской цивилизации. Терри Джонс отправляется в юмористическое путешествие с целью собрать воедино удивительную историю нашего самого простого числа. С помощью компьютерной графики в этой программе единица оживает в самых различных испостасях. Из истории единицы становится ясно, откуда появились современные числа, и каким образом изобретение нуля спасло нас от необходимости сегодня использовать римские цифры.
  • RSA (аббревиатура от фамилий Rivest, Shamir и Adleman) — криптографический алгоритм с открытым ключом, основывающийся на вычислительной сложности задачи факторизации больших целых чисел. Алгоритм используется в большом числе криптографических приложений, включая PGP, S/MIME, TLS/SSL, IPSEC/IKE и других.
  • Жак Сезиано
    Мы знаем о Диофанте немного. Кажется, он жил в Александрии. Никто из греческих математиков не упоминает его до IV века, так что он вероятно жил в середине III века. Самая главная работа Диофанта, «Арифметика» (Ἀριθμητικά), состоялась в начале из 13 «книгах» (βιβλία), т. е. главах. Мы сегодня имеем 10 из них, а именно: 6 в греческом тексте и 4 других в средневековом арабском переводе, место которых в середине греческих книг: книги I-III по-гречески, IV-VII по-арабски, VIII-X по-гречески. «Арифметика» Диофанта прежде всего собрание задач, всего около 260. Теории, по правде говоря, нет; имеются только общие инструкции в введении книги, и частные замечания в некоторых задачах, когда нужно. «Арифметика» уже имеет черты алгебраического трактата. Сперва Диофант пользуется разными знаками, чтобы выражать неизвестное и его степени, также и некоторые вычисления; как и все алгебраические символики средних веков, его символика происходит от математических слов. Потом, Диофант объясняет, как решить задачу алгебраическим способом. Но задачи Диофанта не алгебраические в обычном смысле, потому что почти все сводятся к решению неопределённого уравнения или систем таких уравнений.
  • BBC
    Мир математики немыслим без них – без простых чисел. Что такое простые числа, что в них особенного и какое значение они имеют для повседневной жизни? В этом фильме британский профессор математики Маркус дю Сотой откроет тайну простых чисел.
  • Отрывок из книги «Невероятные числа профессора Стюарта» заслуженного профессора математики Уорикского университета, известного популяризатора науки Иэна Стюарта, посвященной роли чисел в истории человечества и актуальности их изучения в наше время.
  • Брайан Дэвис
    На протяжении большей части XX столетия в «чистой» математике царило замечательное единодушие относительно того, как нужно представлять результаты. Весь предмет сводился к комплексу теорем, каждая из которых, в конечном счете, выводилась из фиксированного набора аксиом путем так называемого строгого логического доказательства. В отдельных разделах математики, таких, например, как арифметика Пеано, справедливость аксиоматики выглядела самоочевидной, однако во многих случаях аксиомы попросту очерчивали рассматриваемую область вопросов. Для математиков, если только они не выходили за рамки математики, выступая в роли философов-любителей, принципиального различия между изобретением и открытием новых концепций не было.
  • Галина Синкевич, Владимир Тихомиров
    Научная биография Карла Вейерштрасса, его основные работы, влияние его учения на развитие математики. Вейерштрасс и теория вещественного числа, зарождение общей топологии, начала математического анализа, комплексный анализ, теория эллиптических функций, теория чисел, вариационное исчисление. Размышления Вейерштрасса о математике и математической жизни.
  • Отрывок из книги «Величайшие математические задачи» заслуженного профессора математики Уорикского университета, известного популяризатора науки Иэна Стюарта о важнейших нерешенных математических задачах и их месте в общем контексте математики и естественных наук.
  • Проскуряков И. В.
    Целью этой книги является строгое определение чисел, многочленов и алгебраических дробей и обоснование их свойств, уже известных из школы, а не ознакомление читателя с новыми свойствами. Поэтому читатель не найдет здесь новых для него фактов (за исключением, быть может, некоторых свойств, действительных и комплексных чисел), но узнает, как доказываются вещи, хорошо ему известные, начиная с «дважды два — четыре» и кончая правилами действий с многочленами и алгебраическими дробями. Зато читатель познакомится с рядом общих понятий, играющих в алгебре основную роль.
  • Владимир Успенский
    В этой книге говориться о математике как о части культуры духовной. Данный текст писался не для математиков, а скорее для гуманитариев. Поэтому при его составлении в ряде случаев приходилось выбирать между понятностью и точностью. Предпочтение отдавалось понятности. Очерчивая место математики в современной культуре, автор пытается прояснить для читателей-нематематиков некоторые основные понятия и проблемы «царицы наук».
  • Каким образом появились числа и как они повлияли на развитие человечества – эти вопросы в центре внимания 5-серийного проекта. В эпизодах, которые пронесут нас сквозь время и пространство, мы увидим, что математика играла важную роль в Древнем Египте и Греции, Индии, Средневековой Европе и продолжает играть сейчас в нашем современном мире.
  • Я давно хотела попасть в Летнюю школу «Современная математика» возле Дубны, которую вот уже 12-й год проводят Московский центр непрерывного изучения математики и Математический институт РАН. Как-то не получалось. В 2009 году я собрала отклики преподавателей и организаторов о Школе, которые говорили о том, как там здорово и интересно. Меня туда приглашал один из ее организаторов, человек, без сомнения, бывший душой Школы — Владимир Игоревич Арнольд. В этом году я решила, что надо, наконец, посмотреть, где же математики проводят лучшую часть лета, и, может быть, найти то место, где находится часть души Арнольда.
  • Виктор Клепцын
    Лекцию читает Клепцын Виктор Алексеевич. Летняя школа «Современная математика», г. Дубна. 29 июля 2017 г.
  • Михаил Раскин
    Пользуясь цифрами 0 и 1, несложно записать натуральное число. Сложение в столбик позволяет прибавить к этому числу единицу. Такой способ записи и изменения числа требует в некоторых ситуациях прочитать и изменить все цифры. А если число большое и мы хотим читать и писать поменьше цифр, но можем быстро запросить любые цифры числа «вразбивку»? Разумеется, придётся изменить представление числа. С середины 20-го века известны коды Грея; нам всё равно потребуется иногда читать число целиком, зато менять надо будет лишь по одной цифре за раз. А можно ли прибавить к числу единицу, не читая всего числа? Оказывается, можно.
  • Гаянэ Панина
    Если у (обычного плоского) квадрата склеить противолежащие стороны, то получится тор с плоской метрикой, то есть каждый достаточно малый участок тора будет устроен как кусочек евклидовой плоскости. Если квадрат заменить на прямоугольник или параллелограмм, аналогичная склейка тоже даст тор с плоской метрикой, но про него разумно сказать — это другой тор, не изометричный первому. Здесь история о поверхностях с плоской метрикой заканчивается, так как никакую другую поверхность (с плоской метрикой) кроме этих торов из куска евклидовой плоскости склеить нельзя. Поэтому мы евклидову плоскость заменим на плоскость Лобачевского (с ней больше свободы!) и определим пространство Тейхмюллера как пространство, элементы которого суть все возможные способы склеить поверхность рода g (т.е. сфера с g ручками) из гиперболической развертки, то есть, из некоторого куска гиперболической плоскости.
<<< |1|2|3|4|5|6|7|…|11| >>>