x, y, z

Магия марковских троек // Александр Веселов ≫ Похожее [2]

Публикации: 204
<<< |1|2|3|4|5|6|…|11| >>>
  • Keith Conrad
    И целые числа, и многочлены (от одной переменной с коэффициентами в Q, R или Z/pZ) можно делить с остатком. Эта и подобные аналогии в структуре целых чисел и многочленов играли и продолжают играть важную роль в математике, особенно в теории чисел. В этом курсе мы исследуем такие аналогии в контексте теории чисел: на примере непрерывных дробей, уравнения Пелля, квадратичных вычетов, и abc-гипотезы. От слушателей требуется знакомство с пределами и арифметикой вычетов.
  • Владимир Успенский
    Курс посвящен римановым поверхностям, модулярным формам и некоторым их приложениям. Эти фундаментальные понятия, играющие важную роль в самых разных разделах математики, можно определить при помощи верхней полуплоскости – множества комплексных чисел с положительной мнимой частью, – которую мы будем рассматривать как модель Пуанкаре плоскости Лобачевского. Соответствующие определения будут даны в курсе.
  • Георгий Шабат
    В школе нам всем прививается ошибочное представление о том, что на множестве рациональных чисел Q имеется единственное естественное расстояние (модуль разности), относительно которого все арифметические операции непрерывны. Однако существует ещё бесконечное множество расстояний, так называемых p-адических, по одному на каждое число p. Согласно теореме Островского, «обычное» расстояние вместе со всеми p-адическими уже действительно исчерпывают все разумные расстояние Q. Термин адельная демократия введен Ю. И. Маниным. Согласно принципу адельной демократии, все разумные расстояния на Q равны перед законами математики (может быть, лишь традиционное «чуть=чуть равнее…». В курсе будет введено кольцо аделей, позволяющее работать со всеми этими расстояниями одновременно.
  • Владимир Арнольд
    Ж. Л. Лагранж доказал, что последовательность неполных частных (начиная с некоторого места) периодична, если и только если число x — квадратичная иррациональность. Р. О. Кузьмин доказал, что в последовательности неполных частных почти любого вещественного числа доля d_m равных m неполных частных одинакова (для типичных вещественных чисел). Доля d_m убывает при m→∞ как 1/m^2 и её величина была предсказана Гауссом (ничего не доказавшим). В. И. Арнольда высказал (лет 20 назад) гипотезу, что статистика Гаусса–Кузьмина d_m выполняется также для периодов цепных дробей корней квадратных уравнений x^2+px+q=0 (с целыми p и q): если выписать вместе неполные частные, составляющие периоды всех цепных дробей корней таких уравнений с p^2+q^2≤R^2, то доля неполного частного m среди них будет стремиться к числу d_m при R→∞. В. А. Быковский со своими хабаровскими учениками доказали недавно эту давнюю гипотезу. Несмотря на это, вопрос о статистике не букв, а составленных из них слов [a_k+1, a_k+2,…, a_k+T], которые являются периодами цепных дробей каких-либо корней x уравнений x^2+px+q=0 далеко не решён.
  • Простые числа — это целые числа больше единицы, которые не могут быть представлены как произведение двух меньших чисел. Если у вас есть несколько монет, но вы не можете расположить их все в форме прямоугольника, а можете только выстроить их в прямую линию, ваше число монет — это простое число. Математик Джеймс Мэйнард о теореме Евклида, гипотезе Римана и современных исследованиях тайн простых чисел.
  • Продолжительность циклов большинства цикад не случайна, а представляет собой интервалы из простых чисел (чисел, делимых без остатка только на себя — 3, 5, 7, 11, 13, 17 и т. д.), являясь наиболее действенной стратегией выживания и размножения.
  • Акулич И. Ф.
    Давайте рассмотрим последовательность чисел, первое из которых равно 1, а каждое последующее вдвое больше: 1, 2, 4, 8, 16, … Называется она вполне ожидаемо: последовательность степеней двойки. Казалось бы, ничего выдающегося в ней нет — последовательность как последовательность, не лучше и не хуже других. Тем не менее, она обладает весьма примечательными свойствами.
  • Берём любое натуральное число n. Если оно чётное, то делим его на 2, а если нечётное, то умножаем на 3 и прибавляем 1 (получаем 3n + 1). Над полученным числом выполняем те же самые действия, и так далее. Гипотеза Коллатца заключается в том, что какое бы начальное число мы ни взяли, рано или поздно мы получим единицу.
  • В математике чрезвычайно редко случается, чтобы учёный старше 40 лет опубликовал первую серьёзную научную работу. Ещё реже бывает, чтобы эта работа имела большую научную ценность. Именно такой редчайший случай представляет из себя доцент университета Нью-Гэмпшира Итан Чжан (Yitang Zhang), который до сих не имеет ни должности профессора, ни веб-странички со списком научных работ. Тем не менее, ему удалось совершить серьёзный шаг к решению одной из старейших математических проблем — гипотезе о простых числах-близнецах.
  • В конце августа 2012 года японский математик Синичи Мочидзуки выложил на свою страницу в интернете четыре научные статьи. Их не сразу заметили, потому что не особенно ждали: без предварительных пресс-релизов, навязчивых анонсов и громких выступлений Мочидзуки опубликовал результат многолетнего самоотверженного труда, которому, вероятно, суждено совершить революцию в современной математике. Проблема лишь в том, что теорию Мочидзуки не торопится принимать научное сообщество – ее почти никто не может понять.
  • Некоторое время назад на сайте препринтов arXiv.org появилось сразу две работы, посвященные задаче о плотнейшей упаковке шаров в пространствах размерности 8 и 24. До настоящего момента аналогичные результаты были известны только для размерностей 1, 2 и 3 (причем тут не все так просто, но об этом ниже). Прорыв — а речь идет про настоящий революционный прорыв — стал возможен благодаря работам Марины Вязовской, математика украинского происхождения, которая сейчас работает в Германии. Мы расскажем историю этого достижения в десяти коротких сюжетах.
  • Георгий Шабат
    Пифагоровой тройкой называются три натуральных числа равные длинам сторон некоторого прямоугольного треугольника. Ещё древние вавилоняне умели находить такие тройки, причём огромных размеров и не пропорциональные друг другу. С современной точки зрения, такая задача равносильна нахождению точек с рациональными координатами на единичной окружности, стандартно вложенной в координатную плоскость. Успехи вавилонян объясняются тем, что множество таких точек бесконечно; в течение тысячелетий постепенно выяснилось, что большинство плоских кривых этим свойством окружности не обладает. Однако полная ясность наступила лишь в двадцатом веке: было обнаружено, что всё дело в топологии комплексификации кривой. На лекции будет рассказано об истории этих исследований и о проблемах, остающихся на сегодняшний день открытыми.
  • Юрий Лебедев
    Когда у меня в руках оказалась старая картонная папка, я был уже уверен, что в ней не вырезки из газет о «царице полей» кукурузе. И совершенно не удивился тому, что моя уверенность оправдалась. В папке находились рукописи или, точнее, черновики двух статей — «Принципы семиотической термодинамики», «Отказ от исключения» — и целая пачка других, для прочтения которых потребуется еще много усилий. Ни имени автора, ни даты написания на листках не было. Вероятнее всего, папку забыл кто-то из «дикарей» прошлых лет. Не имея возможности объясниться с автором, я решил предложить вашему вниманию свой вариант расшифровки одной из этих до крайности небрежно написанных неудобочитаемым почерком статей.
  • Четверо математиков не подозревали о существовании друг друга, пока таинственный незнакомец не собрал их вместе для решения одной трудной головоломки. Хозяин заброшенного дома назвался Ферма, а своим гостям дал имена самых известных в истории математиков. Им предстоит провести два дня в четырёх стенах, которые неожиданно начнут медленно сдвигаться, грозя смертью тем, кто не сумеет разгадать тайну и назвать имя убийцы.
  • Юрий Матиясевич
    Гипотеза Римана может быть сформулирована как утверждение об определителях некоторых матриц, элементы которых задаются через коэффициенты разложения дзета-функции Римана в ряд Тейлора. Оказалось, что в распределении собственных чисел этих матриц можно увидеть некоторые закономерности, позволяющие сформулировать новые гипотезы. В докладе будет показано много «картинок» и компьютерная анимация, раскрывающая «тайную жизнь дзета-функции Римана».
  • Юрий Матиясевич
    Наряду с привнесением революционных идей в информатику, искусственный интеллект и биологию, Тьюринг внес существенный вклад и в такой традиционный раздел математики, как теория чисел. К сожалению, даже о сaмом существовании таких исследований Тьюринга за пределами круга теоретико-числовиков известно немногим. Все опубликованные Тьюрингом работы по теории чисел связаны с одним, но фундаментальным вопросом этой области математики — распределением простых чисел. В частности, Тьюринг предложил метод для проверки справедливости гипотезы Римана для начальных нулей дзета функции Римана. Этот метод остается основным и при всех современных вычислениях на суперкомпьютерах. Тьюринг также изобрел механическое устройство для вычисления нулей дзета функции, получил грант на его реализацию, но эта работа была прервана войной и никогда не закончена.
  • Математики из Университета Техаса в Остине с помощью компьютерных методов решили задачу о булевых пифагоровых тройках. Полная запись решения занимает около 200 терабайт, что делает его самым большим доказательством из существующих. На решение задачи ушло два дня непрерывной работы 800-процессорного суперкомпьютера.
  • В математике полно странных числовых систем, о которых большинство людей никогда не слышало. Некоторые из них даже сложно будет представить. Но рациональные числа знакомы всем. Это числа для счёта предметов и дроби — все числа, известные нам с начальной школы. Но в математике иногда сложнее всего понять самые простые вещи. Они простые, как гладкая стена, без трещин и выступов, или других очевидных свойств, за которые можно было бы ухватиться. Выдающийся математик раскрыл подробности того, как его успехи в изучении тысячелетних математических вопросов связаны с концепциями, взятыми из физики
  • В прошлом двадцатом веке случилось событие, равного по масштабу которого в математике не было за всю ее историю. 19-го сентября 1994 года была доказана теорема, сформулированная Пьером де Ферма (1601-1665) более 350-ти лет назад в 1637 году. Она известна также как «последняя теорема Ферма» или как «большая теорема Ферма», поскольку есть еще так называемая "малая теорема Ферма". Ее доказал 41-летний, до этого момента в математическом сообществе ничем особо непримечательный, и по математическим меркам уже немолодой, профессор Принстонского университета Эндрю Уайлс. Удивительно, что про это событие толком не знают не только наши обычные российские обыватели, но и многие интересующиеся наукой люди, включая даже немалое число ученых в России, так или иначе использующих математику.
  • Математик предлагает продать душу дьяволу за то, чтобы тот доказал или опроверг теорему Ферма. Режиссер: Семен Райтбурт В ролях: В. Шестаков, А. Кайдановский, А. Покровская СССР, 1972 г.
<<< |1|2|3|4|5|6|…|11| >>>