x, y, z

Магия марковских троек // Александр Веселов ≫ Похожее [11]

Публикации: 204
<<< |1|…|7|8|9|10|11|
  • Лев Беклемишев
    Разные варианты выбора неопределяемых понятий. Система аксиом Тарского (по-видимому, самая простая из известных). Роль аксиом непрерывности с точки зрения различия логики первого и второго порядков. Модели и синтаксические интерпретации формальных теорий. Несколько классических интерпретаций, в том числе взаимная интерпретируемость гиперболической и евклидовой геометрии, элементарной геометрии Тарского и элементарной теории поля вещественных чисел, интерпретация теории поля вещественных чисел в арифметике натуральных чисел. Теоремы Тарского о полноте аксиоматики и о существовании алгоритма, распознающего истинность утверждений элементарной геометрии.
  • Юлий Ильяшенко
    Теория Колмогорова–Арнольда–Мозера отвечает на вопросы типа «Могут ли планеты упасть на Солнце? Если да, то с какой вероятностью? И через какое время?» Математическая постановка задачи: предположим, что массы столь малы, что их притяжением друг к другу можно пренебречь. Тогда траектории движения планет можно посчитать; это сделал ещё Ньютон. Если перейти к реальному случаю, когда взаимное притяжение планет влияет на их орбиты, получится малое возмущение интегрируемой, т.е. точно решаемой, системы. Исследование малых возмущений интегрируемых систем классической механики Пуанкаре считал основной задачей теории дифференциальных уравнений. В лекциях будет рассказано, на уровне, доступном старшим школьникам, об основных идеях теории КАМ. Мы не поднимемся до задачи n тел и классической механики, но обсудим диффеоморфизмы окружности и основной шаг индукционного процесса, предложенного Колмогоровым для задач небесной механики.
  • Ольга Ромаскевич
    Если поступить очень жестоко и отобрать у математика карандаш и бумагу, он будет смотреть на небо в поисках новых задач. Вопрос о движении планет (в математическом мире встречающийся под кодовым названием «Задача n тел») является чрезвычайно сложным — настолько сложным, что даже для специальных подслучаев случая n=3 каждый год публикуется огромное количество работ. Разобрать все аспекты этой задачи невозможно даже за семестровый курс. Мы, однако, не испугаемся, и попробуем поиграться в математику, которая здесь возникает. Основной мотивацией для нас будет задача двух тел: задача о движении одной планеты вокруг Солнца в предположении о том, что как будто бы никаких других планет в округе нет.
  • Владимир Успенский
    В отличие от метрической теории алгоритмов, дескриптивная теория не занимается измерением ресурсов (таких как время, объём памяти), затрачиваемых при применении алгоритма к его возможным исходным данным (в другой терминологии — к его входам). Её интересует лишь, возможен алгоритм для решения данной задачи или нет. Начальные понятия дескриптивной теории алгоритмов суть: конструктивный обьект, алгоритм, число шагов алгоритма, вычислимая функция, перечислимое множество, разрешимое множество, сводимость нумераций, главная вычислимая нумерация, вычислимая операция.
<<< |1|…|7|8|9|10|11|