x, y, z

О печальной судьбе «академических» учебников // Владимир Арнольд ≫ Похожее

Публикации: 25
|1|2| >>>
  • Владимир Арнольд
    Я собираюсь рассказать сегодня о довольно грустных обстоятельствах, связанных с положением математического образования во всем мире. Больше всего я знаю положение, естественно, в России, а также во Франции и в Соединенных Штатах. Но процессы, о которых я буду говорить, примерно одновременно идут во всем мире. Они несколько невероятны, но то, что я буду рассказывать, как бы это ни было невероятно, — чистая правда.
  • Владимир Арнольд
    Недавно в американской книжке «Законы Мерфи» я нашел четкую классификацию всех наук: «Если воняет, то это химия, когда ничего не работает — физика, а если понять нельзя ни слова — математика». Я всю жизнь борюсь с этим представлением. По моему мнению, математика — просто часть физики, экспериментальная наука, которая открывает человечеству самые важные и простые законы природы. Разница между математикой и физикой состоит только в том, что в физике эксперименты стоят миллионы или даже миллиарды долларов, а в математике — единицы рублей или копеек. Сегодня я намерен показать вам, как с помощью простейших экспериментов можно открывать новые и неожиданные законы природы.
  • Владимир Арнольд
    Для случайного распределения k точек на целочисленной окружности длины два «параметра стохастичности» β и λ были определены (независимо друг от друга) А.Н. Колмогоровым в 1933 году и В.И. Арнольдом в 2003 году. На занятиях будет показано, что эти параметры, кажущиеся независимыми характеристиками поля случайных точек, становятся функционально зависимыми, когда их значения усреднены по малым флуктуациям точек поля.
  • Владимир Арнольд
    Лекцию читает Арнольд Владимир Игоревич (1937–2010), доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна, 20 июля 2007 г.
  • Владимир Арнольд
    Астроидой называется гипоциклоида с четырьмя остриями. Недавнее появление астроид и гипоциклоид в качестве ответов и моделей в целом ряде различных задач теории особенностей, теории каустик и волновых фронтов, теорий эволют и эвольвент, сделало ясным фундаментальное значение этих объектов и привело к открытию большого числа новых фактов, относящихся то к геометрии и анализу, то к физике и теории распространения волн, то к симплектической и контактной топологии, то к вариационному исчислению и оптимальному управлению. Обнаружение связи между гессиановой топологией и астроидальной геометрией явилось полной неожиданностью и немедленно привело к быстрому прогрессу в обеих областях.
  • Николай Тюрин
    Если представлять себе выдающиеся произведения научной литературы как горные маршруты, уводящие в небо, то наш небольшой курс — не более чем прогулка с видом на далекие белоснежные вершины. Мы собираемся просмотреть видимые начала одного из красивейших маршрутов, уводящего далеко за облака, к высоким перевалам и вершинам классической механики. Очень скоро вчерашние школьники сами выйдут на этот маршрут, а пока… давайте немного потренируемся.
  • Владимир Арнольд
    Лекцию читает Арнольд Владимир Игоревич (1937–2010), доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна, 20 июля 2003 г.
  • Владимир Арнольд
    Сборник «Задачи для детей от 5 до 15 лет» вызвал много отзывов. И дети, и взрослые читатели часто сожалели, что там были только математические задачи, — ведь и все естествознание заслуживает столь же активного, творческого к себе отношения. Теперь я отвечаю на эти пожелания — следуя скорее Яну Амосу Каменскому, чем современным педагогам, то есть всегда стремясь быть понятным читателю, не имеющему предварительных знаний (но столь же любознательному, как большинство подростков).
  • Владимир Арнольд
    Ж. Л. Лагранж доказал, что последовательность неполных частных (начиная с некоторого места) периодична, если и только если число x — квадратичная иррациональность. Р. О. Кузьмин доказал, что в последовательности неполных частных почти любого вещественного числа доля d_m равных m неполных частных одинакова (для типичных вещественных чисел). Доля d_m убывает при m→∞ как 1/m^2 и её величина была предсказана Гауссом (ничего не доказавшим). В. И. Арнольда высказал (лет 20 назад) гипотезу, что статистика Гаусса–Кузьмина d_m выполняется также для периодов цепных дробей корней квадратных уравнений x^2+px+q=0 (с целыми p и q): если выписать вместе неполные частные, составляющие периоды всех цепных дробей корней таких уравнений с p^2+q^2≤R^2, то доля неполного частного m среди них будет стремиться к числу d_m при R→∞. В. А. Быковский со своими хабаровскими учениками доказали недавно эту давнюю гипотезу. Несмотря на это, вопрос о статистике не букв, а составленных из них слов [a_k+1, a_k+2,…, a_k+T], которые являются периодами цепных дробей каких-либо корней x уравнений x^2+px+q=0 далеко не решён.
  • Математик, руководитель Департамента математики факультета экономики ВШЭ о проблемах российского образования, предсказаниях биржи и качествах ученого
  • Пифагорейцы утверждали, что числа правят миром, а Александр Суворов называл математику «гимнастикой ума». Сейчас интерес к этой науке постепенно возрождается. T&P поговорили с пятью известными математиками, чтобы разобраться, зачем формулы и уравнения нужны в повседневной жизни, почему математика — интересный и творческий предмет, и что теряет гуманитарий, отмахиваясь от этой науки.
  • Я давно хотела попасть в Летнюю школу «Современная математика» возле Дубны, которую вот уже 12-й год проводят Московский центр непрерывного изучения математики и Математический институт РАН. Как-то не получалось. В 2009 году я собрала отклики преподавателей и организаторов о Школе, которые говорили о том, как там здорово и интересно. Меня туда приглашал один из ее организаторов, человек, без сомнения, бывший душой Школы — Владимир Игоревич Арнольд. В этом году я решила, что надо, наконец, посмотреть, где же математики проводят лучшую часть лета, и, может быть, найти то место, где находится часть души Арнольда.
  • Илья Клишин
    После года высшей математики в американской сельской школе я экстерном закончил одиннадцатый класс в своем физико-математическом лицее в России и сдал вступительный экзамен по математике в МГУ. Без каких-либо дополнительных занятий. Но еще раз подчеркну: там система строится на инициативе. Никто вас не заставляет брать этот предмет, если вы не хотите. Система исходит из того, что к 14-15 годам подросток уже примерно понимает свои интересы и может сам определить, в какую сторону развиваться и что готовить к колледжу.
  • В формате «Точка зрения» ПостНаука знакомит читателей с мнениями наших экспертов об актуальных проблемах общества, образования и науки. В новом выпуске мы попросили наших авторов высказать свою точку зрения по поводу основных проблем преподавания физики в школе.
  • Можно ли выучить английский, если ты уже давно не ребенок и кажется, что время упущено? Какие мифы нам мешают в изучении новых иностранных языков и как все-таки достичь быстрых результатов? На эти и другие вопросы отвечают преподаватели психологии Роджер Крез и Ричард Робертс в своей книге «Английский для взрослых. Как когнитивная наука помогает взрослым в изучении иностранного языка» (перевод выходит осенью в издательстве «Альпина Паблишер»). Мы публикуем несколько любопытных фрагментов из нее.
  • Владимир Сперантов
    Покажем яркие и интересные эксперименты по физике, некоторые из которых, на первый взгляд, противоречат «здравому смыслу». Поговорим о том, что и как мы видим, слышим. Обсуждая результаты демонстраций, мы убедимся в общности законов природы.
  • Салман Хан
    На конференции Gel (Good Experience Live) Салман Хан рассуждает, что именно сделало его проект таким востребованным. Это и правда самый главный вопрос: чем его ролики лучше всего остального, что предлагает интернет? И что мы, в конце концов, видим — революцию в образовании или просто очень талантливого учителя?
  • Сергей Рукшин
    О том, как строить работу с одаренными детьми, на каких принципах удается воспитывать столь одаренных математиков как Григорий Перельман, Станислав Смирнов и другие, мы побеседовали с Сергеем Рукшиным, заслуженным учителем РФ, канд. физ.-мат. наук, членом Общественного совета при Министерстве образования и науки, основателем и директором Санкт-Петербургского городского математического центра для одаренных школьников, доцентом РГПУ им. А.И. Герцена. Беседовала Наталия Демина.
  • Морис Клайн
    Книга известного американского ученого, почетного профессора математики Нью-Йоркского университета, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее места в физических науках. Имя автора давно и хорошо известно советским и российским читателям.
  • Если в детстве вы не могли выучить таблицу умножения, в школе паниковали перед надвигающейся контрольной по алгебре, а позже с большим облегчением расстались с устным счетом вообще, то, возможно, вам не повезло столкнуться с состоянием, которое называют математической тревожностью. О том, что это такое, из-за чего она появляется и как с ней пытаются бороться, читайте в нашем материале.
|1|2| >>>