x, y, z

Проволочные узлы (пример экспериментальной математики) // Алексей Сосинский ≫ Похожее

Публикации: 234
|1|2|3|4|5|…|12| >>>
  • Алексей Сосинский
    В лекции будут обсуждаться примеры сингулярных (особых) мыльных пленок, натянутых на проволочные контуры сложной формы (узлы, каркас куба и тетраэдра, и др.) Будут проводится демонстрации соответствующих экспериментов с проволоками и мыльным растворам, и на экране будут показаны фотографии и компьютерная графика изображений результатов. Оказывается, что на пленках возникают только два тина особенностей — так называемые “тройные линии” и “шестикрылые бабочки”, удивительным образом совпадающие с особенностями “специальных спайнов” (играющих ключевую роль в работах С. Матвеева и его школы по классификации трехмерных многообразий). Цель лекции — привлечь внимание слушателей к созданию (пока еще не существующей) математической теории сингулярных минимальных поверхностей.
  • Алексей Сосинский
    В лекции будет сказано, что такое узлы (и их родственники — зацепления, косы, ленты), но вместо соответствующих теорий, будут рассказаны некоторые яркие «внешние» применения этих понятий, т. е. приложения к другим наукам. А именно: Индекс зацепления двух кривых и электромагнетизм; Перестройки по заузленным лентам и опровержения первоначального варианта его знаменитой гипотезы; Косы и оправдание существования позитрона (и вообще антимира); Заузленные ДНК; Простейшее зацепление и расслоение Хопфа.
  • Алексей Сосинский
    Будет рассказано, что такое математическая теория узлов и зачем нужны их инварианты. Задача (трехмерная) о классификации узлов будет сведена к чисто комбинаторной двумерной задаче с помощью изящного инструмента — операций Райдемайстера. Затем будет показано, как вычисляется знаменитый инвариант узлов — полином Александера–Конвея. Будет построен (со всеми доказательствами) еще более знаментый инвариант узлов — полином Джонса, за который в 1992 году австралийский математик Воан Джонс получил медаль Фильдса. Это будет сделано с помощью т.н. скобки Кауфмана, т.е. с помощью соображений, тесно связанных со статистической физикой. Мы научимся вычислять этот полином и докажем ряд его свойств.
  • Сергей Львовский
    Цель этого курса — познакомить слушателей с дифференциальной геометрией на материале одного классического сюжета, не дублируя того, что им будет рассказано в процессе дальнейшего обучения, и не прибегая к сколько-нибудь сложным вычислениям. Развертывающаяся поверхность — это поверхность, которая получается, если согнуть лист бумаги, не делая складок. Развертывающиеся поверхности обладают замечательными свойствами. Некоторые из этих свойств можно увидеть, если очень внимательно приглядеться к согнутому листу бумаги, некоторые другие таким способом заметить, пожалуй, нельзя.
  • Алексей Сосинский
    Один из важнейших понятий механики и теоретической физики — понятие конфигурационного пространства механической системы — почему-то остается неизвестным не только школьникам, но и большинству студентов-математиков. В лекции рассмотрен очень простой, но весьма содержательный класс механических систем — плоские шарнирные механизмы с двумя степенями свободы. Мы обнаружим, что в «общем случае» их конфигурационные пространства суть двумерные поверхности, и постараемся понять — какие именно. (Здесь имеются окончательные результаты десятилетней давности Димы Звонкина.) Далее обсуждаются нерешенные математические задачи, связанные с шарнирными механизмами. (В том числе две гипотезы, а точнее — недоказанные теоремы, американского математика Билла Тёрстона.)
  • Владимир Арнольд
    Астроидой называется гипоциклоида с четырьмя остриями. Недавнее появление астроид и гипоциклоид в качестве ответов и моделей в целом ряде различных задач теории особенностей, теории каустик и волновых фронтов, теорий эволют и эвольвент, сделало ясным фундаментальное значение этих объектов и привело к открытию большого числа новых фактов, относящихся то к геометрии и анализу, то к физике и теории распространения волн, то к симплектической и контактной топологии, то к вариационному исчислению и оптимальному управлению. Обнаружение связи между гессиановой топологией и астроидальной геометрией явилось полной неожиданностью и немедленно привело к быстрому прогрессу в обеих областях.
  • Владимир Успенский
    Успенский Владимир Андреевич, доктор физико-математических наук, профессор. Летняя школа «Современная математика», г. Дубна, 9 июля 2012 г.; XIV Летняя лингвистическая школа, г. Дубна, «Ратмино», 8-18 июля 2012 г.
  • Юрий Бурман
    Число В вершин, число Р ребер и число Г граней выпуклого многогранника связаны соотношением В−Р+Г=2. Легко сообразить, что это широко известное утверждение не имеет прямого отношения к выпуклости: если на боку выпуклого многогранника сделать вмятину, то он перестанет быть выпуклым, а количество вершин, ребер и граней сохранится. В то же время для совершенно произвольного многогранника теорема неверна. В данном курсе мы выясним, в каких именно случаях эти утверждения верны и почему на самом деле это — одна и та же теорема. Также мы разберемся, как выглядят аналогичные утверждения для других поверхностей, и не только для поверхностей (а, например, для графов или для многомерной сферы).
  • Сергей Новиков
    Квазипериодические функции: что это такое, откуда возникают, проблемы их изучения, как появляется топология и динамические системы. Лекцию читает Новиков Сергей Петрович, академик РАН, доктор физико-математических наук, профессор.
  • Владимир Арнольд
    Лекцию читает Арнольд Владимир Игоревич (1937–2010), доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна, 20 июля 2003 г.
  • Сергей Новиков
    Лекцию читает Новиков Сергей Петрович, академик РАН, доктор физико-математических наук, профессор. Летняя школа «Современная математика», г. Дубна 21 июля 2005 г.
  • Георгий Шабат
    Детские рисунки (dessins d'enfants) – термин, введённый Александром Гротендиком в 70-е годы прошлого века. С «детской» точки зрения этот термин означает граф, вложенный в поверхность; с взрослой – это объект, в котором закодированы различные структуры, относящиеся к далёким друг от друга областям математики. Под подсчётом детских рисунков понимается подсчёт количества детских рисунков ограниченной сложности, которая будет определена. В последние годы были получены замечательные результаты о количествах детских рисунков. Элементарная часть этих результатов будет изложена в курсе.
  • Георгий Шабат
    Предполагается прочесть четыре лекции. Первые две будут популярны и общепонятны, а третья и четвёртая будут содержать довольно поверхностные обзоры некоторых перспективных направлений современной математики. 1. О геометрии над конечными полями. 2. Группы Шевалле и группы перестановок. 3. Линейная алгебра над F1 и гомотопическая топология. 4. Разное. Обобщённые кольца Дурова и F∅, F±1, F∞√1. Анализ на множестве корней из единицы (по Хабиро, Концевичу, Манину). О геометрии Аракелова. О тропической математике.
  • Георгий Шабат
    Мы сейчас знаем о строении Вселенной примерно столько же, сколько древние люди знали о поверхности Земли. Точнее, мы знаем, что небольшая часть Вселенной, доступная нашим наблюдениям, устроена так же, как небольшая часть трёхмерного евклидова пространства. Иначе говоря, мы живём на трёхмерном многообразии (3-многообразии). Кругосветным путешествиям и построениям полных атласов может предшествовать априорная классификация маломерных многообразий — вопрос о том, где мы “на самом деле” живём заменяется на вопрос где мы могли бы жить? Эта классификация (требующая некоторых естественных ограничений на многообразия) тривиальна в размерности 1, допускает красивый полный ответ в размерности 2, полученный в XIX веке, и составляет исключительно трудную проблему в размерности 3. В этой проблеме совсем недавно достигнуты замечательные результаты, обзор которых и составляет цель курса.
  • Алексей Сосинский
    В алгоритмической теории информации колмогоровская сложность объекта (такого, как текст) есть мера вычислительных ресурсов, необходимых для точного определения этого объекта. Колмогоровская сложность также известна как описательная сложность, сложность Колмогорова — Хайтина, стохастическая сложность, алгоритмическая энтропия или алгоритмическая сложность.
  • Владимир Успенский
    Курс посвящен римановым поверхностям, модулярным формам и некоторым их приложениям. Эти фундаментальные понятия, играющие важную роль в самых разных разделах математики, можно определить при помощи верхней полуплоскости – множества комплексных чисел с положительной мнимой частью, – которую мы будем рассматривать как модель Пуанкаре плоскости Лобачевского. Соответствующие определения будут даны в курсе.
  • Алексей Сосинский
    Курс занятий посвящен тому, что в математике сделать нельзя. Но речь пойдет не о запрещенных действиях (типа деления на ноль или квадратуры круга), а об отсутствии общих методов для решения некоторых широких классов задач. Начиная от определения вычислимой функции (через машину Тюринга), мы узнаем про существование универсальной вычислимой функции, и как следствие – о существовании не вычислимых функций. Отсюда мы поймем, какие задачи никакой компьютер (даже сколь угодно мощный) решить не может в принципе. Затем мы определим «Колмогоровскую сложность» и изучим ряд ее «нехороших» свойств, именно, не вычислимость некоторых связанных с ней характеристик. Эти свойства сыграют решающую роль в доказательстве теоремы Гёделя о неполноте – одного из самых значительных научных открытий ХХ-го века.
  • Максим Казарян
    Математик Максим Казарян о римановых пространствах, гауссовой кривизне и фробениусовых многообразиях.
  • Евгений Фейгин
    Математик Евгений Фейгин о применениях групп Ли, дифференциальной геометрии и касательных пространствах.
  • Сергей Ландо
    Когда топология стала самостоятельным разделом математики? В чем различия между топологией и геометрией? Какое применение топология нашла в физике? И каковы перспективы исследований в этой области? Об этом рассказывает доктор физико-математических наук Сергей Ландо.
|1|2|3|4|5|…|12| >>>