x, y, z

Дифференциальные уравнения: то решаем, то рисуем // Дмитрий Аносов ≫ Похожее

Публикации: 157
|1|2|3|4|5|…|8| >>>
  • Дмитрий Аносов
    Как геометрические соображения помогают понять свойства решений дифференциальных уравнений. С этим и связаны слова «то решаем, то рисуем» в названии лекции. Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых достижениях XX века, включая понимание механизма возникновения «хаоса» в поведении детерминированных объектов.
  • Юлий Ильяшенко
    Эволюционные процессы происходят повсюду вокруг нас — от движения атомов до движения планет. Ньютон понял, что эти процессы описываются дифференциальными уравнениями, и что эти уравнения полезно решать. В последующие полтора столетия стало ясно, что большинство дифференциальных уравнений решить нельзя. Пуанкаре создал новую ветвь математики — качественную или геометрическую теорию дифференциальных уравнений, которая изучает свойства решений непосредственно по уравнению, минуя попытки это уравнение решить. Оказалось, что даже на качественном уровне поведение решений может быть очень сложным. Ситуация резко упрощается, если «все» уравнения заменить на «типичные». С физической точки зрения интересны именно типичные дифференциальные уравнения. В лекциях будет рассказано об эволюции этих концепций и сформулированы некоторые нерешенные проблемы.
  • Юлий Ильяшенко
    Как менялись наши представления об аттракторах? Чего мы ожидаем от аттракторов? Предполагается, что слушатели знают определение и свойства компактных множеств в евклидовом пространстве, а также знакомы с определениями и примерами гомеоморфизмов и диффеоморфизмов. Последние определения будут даны в курсе, но лучше знать их заранее.
  • В физике есть уравнения, описывающие всё, от растяжения пространства-времени до полёта фотона. Однако же лишь один набор уравнений считается настолько математически сложным, что его выбрали в роли одной из семи «Задач тысячелетия», за решение которых Математический институт Клэя предлагает премию в миллион долларов: это уравнения Навье-Стокса, описывающие течение жидкостей. Почему же эти уравнения, описывающие такие знакомые явления, как вода, текущая по шлангу, математически понять гораздо сложнее, чем, допустим, уравнения поля Эйнштейна, включающие в себя такие ошеломляющие объекты, как чёрные дыры? Ответ кроется в турбулентности. Это явление испытывали мы все, в полёте в неоднородном воздухе на высоте в 10000 м, или при наблюдении за воронкой от уходящей в слив воды в ванне. Однако из осведомлённости не следует познание: турбулентность — одна из наименее понятных областей физического мира.
  • Уравнения Навье-Стокса при помощи нескольких лаконичных членов описывают одно из самых распространённых явлений физического мира: течение жидкостей. Эти уравнения используются для описания всего, от океанских течений и турбулентности, следующей за самолётом до потока крови в сердце. Хотя физики считают эти уравнения надёжными, как молоток, математики относятся к ним с недоверием. Для математика то, что эти уравнения вроде бы работают, мало что значит. Им нужны доказательства того, что уравнения безошибочны: что для любой жидкости и для долгосрочного прогноза, распространённого сколь угодно далеко в будущее, математика уравнений не подведёт.
  • Дмитрий Аносов
    Лекции читает Аносов Дмитрий Викторович, доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна. 16-18 июля 2002 г.
  • Провернувшись несколько кругов с колесом, куда полетит камень, когда выскочит из протектора? Против направления движения мотоцикла или по направлению? Как известно, свободное движение тела начинается по касательной к той траектории, по которой оно двигалось. Касательная к циклоиде всегда направлена по направлению движения и проходит через верхнюю точку производящей окружности. По направлению движения полетит и наш камушек. Помните, как Вы катались в детстве по лужам на велосипеде без заднего крыла? Мокрая полоска на вашей спине является житейским подтверждением только что полученного результата.
  • Дмитрий Аносов
    Теорема Шарковского, доказанная в 1960-х гг., даёт ответ на вопрос: как для непрерывного отображения отрезка в себя связано наличие периодических точек различных периодов? Эта теорема была первым общим результатом о динамических системах, получающихся при итерировании отображений отрезка в себя. Хотя эта «одномерная динамика» кажется чем-то весьма специальным, подобные отображения возникают в некоторых вопросах естествознания и техники, а также играют важную вспомогательную роль при чисто теоретических исследованиях более сложных динамических систем.
  • Дмитрий Аносов
    Лекции читает Аносов Дмитрий Викторович, доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна. 2001 г.
  • Отрывок из книги «Невероятные числа профессора Стюарта» заслуженного профессора математики Уорикского университета, известного популяризатора науки Иэна Стюарта, посвященной роли чисел в истории человечества и актуальности их изучения в наше время.
  • Дмитрий Аносов
    Из курса математического анализа известно, что если функция имеет n производных, то n-я производная может даже не быть непрерывной; если функция имеет все производные, то она может все-таки не разлагаться в ряд Тейлора: он может расходиться или сходиться к другой функции. Удивительная особенность функций комплексного переменного состоит в том, что одна только дифференцируемость функции во всех точках ее области определения обеспечивает, что функция имеет все производные и разлагается в ряд Тейлора. Этот факт доказывается с использованием интегрального исчисления функций комплексного переменного, хотя по своей форме он относится к дифференциальному исчислению. В лекциях будет предложено другое доказательство того же факта. Оно обходится без специфического комплексного интегрирования и вообще опирается на “вещественные” сведения.
  • Совсем недавно математики рассказали о решении важной задачи из теории минимальных поверхностей — о поведении мыльной пленки на гибком каркасе. Как часто бывает в физике, эта теоретическая задача связана с гораздо более широким кругом явлений, чем простое возникновение мыльных пленок: от динамики молекул до гравитационных полей черных дыр. Мы предлагаем вам небольшой экскурс в одну из самых красивых задач математики — задачу Плато о минимальных поверхностях.
  • Математики решили задачу о поведении мыльной пленки в гибком каркасе. Эта задача — более сложный вариант классической задачи Плато, в которой требуется доказать, что для любого замкнутого жесткого каркаса в пространстве найдется поверхность минимальной площади с границей на каркасе. Именно такую минимальную поверхность повторяет мыльная пленка, которая образуется, если окунуть каркас в мыльный раствор.
  • Юлий Ильяшенко
    Пусть на плоскости (или на прямой) задано векторное поле: в каждой точке нарисован вектор. Этому полю можно сопоставить дифференциальное уравнение: точка x(t) движется «по стрелочкам» – так, что dx/dt=v(x(t)) при всех t. Типичный вопрос теории динамических систем – описать качественное поведение решений при t→+∞. Скажем, решения могут стремиться к устойчивому положению равновесия, «наматываться» на периодическую траекторию («предельный цикл»), и так далее. Следующий вопрос – а что будет, если система зависит от параметра, и мы начинаем этот параметр менять? Как будет изменяться качественное поведение системы?
  • Сергей Курдубов
    Сергей Курдубов расскажет, как простые уравнения приводят к сложным решениям, на примере задачи Ситникова. Вы узнаете: Какие бывают виды уравнений; Решение каких уравнений число, а каких — функция; Когда можно взять производную, а интеграл нет; Что значит «дифференциальное уравнение»; Чем занимаются ученые, если все законы известны; Когда не поможет даже самый мощный компьютер будущего.
  • Сергей Куксин
    Доклад посвящен обсуждению свойств нелинейных уравнений в частных производных со случайной правой частью, отличающих их от не-случайных уравнений. Основным примером будет служить двухмерная система Навье–Стокса. Изложение элементарное.
  • Сергей Куксин
    Основным сюжетом, которому будет посвящена лекция, будет теория турбулентности, представляющая собой огромный вызов современной математике. А именно, в настоящий момент существует — созданная Колмогоровым, Онзагером и Дж. Тейлором — феноменологическая теория турбулентности. Эта теория, достаточно адекватно описывает явления, возникающие при нарастании скоростей (или, что то же самое, при уменьшении вязкости жидкости). Однако со времён её создания не было никаких продвижений в строгом её обосновании. Это — замечательный вызов!
  • Владимир Захаров
    Программа Гордона
    Что такое вихревая турбулентность и чем она отличается от волновой? Чем определяется порядок величины диссипации энергии в турбулентном потоке? Почему турбулентность до сих пор остается «белым пятном» в классической механике? О физических принципах, лежащих в основе этого явления, — академик РАН Владимир Захаров.
  • Владимир Побережный
    Математик Владимир Побережный об экспонентах, источниках дифференциальных уравнений и векторном пространстве функций.
  • Илья Щуров
    Представим себе заведенные часы, в которых маятник находится в положении равновесия. Возможно, вы знаете, что для того, чтобы такие часы запустить, маятник нужно немного качнуть в сторону. Но после того, как вы его качнете, вы можете его качнуть совсем слабенько или вы можете его качнуть достаточно сильно, вне зависимости от того, как сильно вы это сделаете, маятник достаточно быстро начнет колебаться с той частотой и с той амплитудой, с которой он должен это делать. Именно это позволяет ему аккуратно отмерять время. С точки зрения математика, маятник переходит в режим, который называется движением по предельному циклу. Что это означает?
|1|2|3|4|5|…|8| >>>