x, y, z

Алгебраическая сложность // Александр Разборов ≫ Похожее [6]

Публикации: 226
<<< |1|2|3|4|5|6|7|8|9|10|…|12| >>>
  • Теплым весенним утром Джун Ху шел в зал Макдоннелла Пристонского университета, где его ждали студенты. Однако он не был уверен, что идет в нужном направлении. Ху работает в элитарном Институте перспективных исследований, который располагается неподалеку от студгородка Принстона. Будучи сотрудником института, Ху не обязан преподавать. Тем не менее, он вызвался прочитать студентам продвинутый курс по коммутативной алгебре.
  • Дмитрий Казаков
    Как были открыты три поколения кварков? Какие теории описывают взаимодействие частиц? Какими свойствами обладают кварки? О типах элементарных частиц, теории групп и открытии трех поколений кварков рассказывает доктор физико-математических наук Дмитрий Казаков.
  • Жак Сезиано
    За два тысячелетия произошло три важных расширения числовой области. Во-первых, около 450 г. до н.э. учёные школы Пифагора доказали существование иррациональных чисел. Их начальной целью было числовое выражение диагонали единичного квадрата. Во-вторых, в XIII-XV веках европейские учёные, решая системы линейных уравнений, допустили возможность одного отрицательного решения. И, в-третьих, в 1572 г. итальянский алгебраист Рафаэль Бомбелли использовал комплексные числа для получения действительного решения некоего кубического уравнения.
  • В середине XIX века были сделаны открытия, которые в корне изменили алгебру и привели к ее окончательному отделению от арифметики. История открытия алгебры кватернионов и булевой алгебры.
  • Алексей Савватеев
    Теория Галуа — раздел алгебры, позволяющий переформулировать определенные вопросы теории полей на языке теории групп, делая их в некотором смысле более простыми. Теория Галуа даёт единый элегантный подход к решению классических задач: какие фигуры можно построить циркулем и линейкой? какие алгебраические уравнения разрешимы с помощью стандартных алгебраических операций (сложение, вычитание, умножение, деление и извлечение корня)?
  • Лев Беклемишев
    В докладе рассмотрены два класса объектов, имеющих различную природу, но неожиданным образом аналогичные по своим свойствам. С одной стороны, так называемые алгебры доказуемости, возникающие при изучении свойств формальной доказуемости в арифметических теориях. С другой стороны, топологические пространства, наделённые одной или несколькими разреженными топологиями, то есть такими, что любое непустое подмножество X имеет хотя бы одну изолированную точку.
  • Алексей Савватеев, Алексей Семихатов
    Вопрос науки
    Зачем математики придумывают всё новые неразрешимые задачи? Зачем нужна современная математика? Среди ученых нет ни одного, кто разбирался бы во всех областях современных математических наук. А математики придумывают все новые и новые неразрешимые задачи, и потом десятилетиями бьются над ними. Зачем все это? И какое отношение математика имеет к нашей жизни? Гость программы доктор физико-математических наук Алексей Савватеев. Беседует Алексей Семихатов.
  • Жак Сезиано
    Мы знаем о Диофанте немного. Кажется, он жил в Александрии. Никто из греческих математиков не упоминает его до IV века, так что он вероятно жил в середине III века. Самая главная работа Диофанта, «Арифметика» (Ἀριθμητικά), состоялась в начале из 13 «книгах» (βιβλία), т. е. главах. Мы сегодня имеем 10 из них, а именно: 6 в греческом тексте и 4 других в средневековом арабском переводе, место которых в середине греческих книг: книги I-III по-гречески, IV-VII по-арабски, VIII-X по-гречески. «Арифметика» Диофанта прежде всего собрание задач, всего около 260. Теории, по правде говоря, нет; имеются только общие инструкции в введении книги, и частные замечания в некоторых задачах, когда нужно. «Арифметика» уже имеет черты алгебраического трактата. Сперва Диофант пользуется разными знаками, чтобы выражать неизвестное и его степени, также и некоторые вычисления; как и все алгебраические символики средних веков, его символика происходит от математических слов. Потом, Диофант объясняет, как решить задачу алгебраическим способом. Но задачи Диофанта не алгебраические в обычном смысле, потому что почти все сводятся к решению неопределённого уравнения или систем таких уравнений.
  • Михаил Берштейн
    В этой лекции преподаватель магистерской программы «Математическая физика» Сколтеха Михаил Берштейн рассказывает о фазовых переходах и модели Изинга.
  • Из всех теорем Игоря Шафаревича мы выбрали одну, точнее, даже не теорему, а следствие из нее, мимоходом закрывшее изящный вопрос из теории групп, сформулированный за 60 лет до этого, — оно отрицательно решило общую проблему Бернсайда. Это красивая история, в которой Шафаревич появляется как известный актер в камео — с короткой и яркой репликой.
  • RSA (аббревиатура от фамилий Rivest, Shamir и Adleman) — криптографический алгоритм с открытым ключом, основывающийся на вычислительной сложности задачи факторизации больших целых чисел. Алгоритм используется в большом числе криптографических приложений, включая PGP, S/MIME, TLS/SSL, IPSEC/IKE и других.
  • Виктор Викторов
    Матрица. Вектор. Сложение векторов и свойства сложения векторов. Геометрическая интерпретация вектора и сложения векторов. Умножение вектора на скаляр и его свойства. Однородная линейная функция вещественных чисел. Геометрическая интерпретация умножения вектора на скаляр. Умножение вектора на матрицу. Зачем нам нужны векторы? Сравнение свойств сложения и умножения вещественных чисел и векторов. Умножение на нулевой вектор. Дистрибутивность. Транспонирование матрицы. Система линейных уравнений. Метод исключения Гаусса-Джордана. Умножение матрицы на матрицу. Обратная матрица. Определитель квадратной матрицы.
  • BBC
    Мир математики немыслим без них – без простых чисел. Что такое простые числа, что в них особенного и какое значение они имеют для повседневной жизни? В этом фильме британский профессор математики Маркус дю Сотой откроет тайну простых чисел.
  • Дмитрий Казаков
    Как законы сохранения связаны с симметрией? На каких группах симметрии основана Стандартная модель? Какие примеры нарушенной симметрии существуют в физике элементарных частиц? О типах преобразований в физике частиц, лоренц-инвариантности и нарушениях симметрии рассказывает доктор физико-математических наук Дмитрий Казаков.
  • Владимир Кассандров
    Программа Гордона
    Существует ли единый «Код Природы»? Может ли число порождать свет, а свет — материю? В чем суть основных принципов «неопифагорейского» подхода к построению физических теорий? О «реке времени» и частицах как точках «сгущения» первичных световых потоков — кандидат физико-математических наук, доцент кафедры общей физики Российского университета дружбы народов (РУДН) Владимир Всеволодович Кассандров.
  • Андрей Окуньков
    Высшую математическую награду мира, Филдсовскую премию, вручают один раз в четыре года математику не старше 40 лет. Таково было предложение Джона Филдса, президента Математического конгресса в 1924 году. За всю историю математики лишь 8 обладателей этой премии были выходцами из России. Один из них — Андрей Окуньков.
  • Валерий Опойцев
    Комплексные числа: Как возникают и что обеспечивают. Как введение «странных» объектов проливает свет на реальные проблемы. Теория вещественных чисел: Пополнение прямой. Сечения Дедекинда. Зачем это нужно. Системы счисления: Что говорил Плутарх. Позиционная запись чисел. Десятичная система, двоичная. Игра «Ним» на шахматной доске. Двоичный выигрывающий алгоритм. Множества и операции: Наивная теория множеств. Сходство и различия с арифметическими операциями. Булевы структуры. Какими моделями их можно наполнять. Как эти модели перекликаются. Математическая индукция: Аксиома Пеано. Механизм индукции. Примеры.
  • Алексей Семихатов
    Как математически были классифицированы симметрии явлений? Как соотносятся полупростые группы Ли и физика элементарных частиц? Что явилось математической предпосылкой существования кварков? О полупростых группах Ли, классификации элементарных частиц и математических моделях в природе рассказывает Алексей Михайлович Семихатов, доктор физико-математических наук, главный научный сотрудник Физического института им. Лебедева РАН.
  • Проскуряков И. В.
    Целью этой книги является строгое определение чисел, многочленов и алгебраических дробей и обоснование их свойств, уже известных из школы, а не ознакомление читателя с новыми свойствами. Поэтому читатель не найдет здесь новых для него фактов (за исключением, быть может, некоторых свойств, действительных и комплексных чисел), но узнает, как доказываются вещи, хорошо ему известные, начиная с «дважды два — четыре» и кончая правилами действий с многочленами и алгебраическими дробями. Зато читатель познакомится с рядом общих понятий, играющих в алгебре основную роль.
  • Илья Щуров
    Математик Илья Щуров о десятичных дробях, трансцендентности и иррациональности числа Пи.
<<< |1|2|3|4|5|6|7|8|9|10|…|12| >>>