x, y, z

Алгебраическая сложность // Александр Разборов ≫ Похожее [5]

Публикации: 226
<<< |1|2|3|4|5|6|7|8|9|…|12| >>>
  • Александр Шень
    Какова история создания машины Тьюринга? Как она повлияла на развитие идей, лежащих в основе ряда современных технологий? Какие проблемы существуют в теории вычислительной сложности? И как математика рассматривает понятие случайность? Об идее универсальной машины, проблеме перебора и случайности рассказывает кандидат физико-математических наук Александр Шень.
  • Питер Эткинз
    Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.
  • Алексей Савватеев
    Вводный миникурс по алгебре, ориентированный на студентов-первокурсников, но всем остальным может быть интересно тоже.
  • Алексей Левин
    Ровно сто лет назад на семинаре Геттингенского математического общества была представлена теорема, которая со временем стала важнейшим инструментом в математической и теоретической физике. Она связывает каждую непрерывную симметрию физической системы с некоторым законом сохранения (например, если в изолированной системе частиц процессы инвариантны относительно сдвига по времени, то в этой системе выполняется закон сохранения энергии). Доказала эту теорему Эмми Нётер — и этот результат, наряду с последовавшими важнейшими работами по абстрактной алгебре, заслуженно позволяет многим считать Нётер величайшей женщиной в истории математики.
  • Алексей Савватеев
    В миникурсе ликвидируются пробелы школьного образования, относящиеся к теории групп и к конкретным примерам групп. Будут установлены базовые факты про вычеты, доказана малая теорема Ферма, исследованы подгруппы групп перестановок на трёх и четырёх символах, введено понятие нормальной подгруппы данной группы и простоты группы. Затем будет доказано, что группа чётных перестановок на n≥5 символах — простая (что откроет желающим дорогу к вопросам о разрешимости алгебраических уравнений в радикалах), а также что подгруппа переносов плоскости (пространства) — нормальная в группе всех (аффинных) движений соответствующего объекта. Маломерные группы движений получат полную характеризацию (теорема Шаля и законы композиции движений разных видов).
  • Рид Майлс
    I leave the title and abstract as vague as possible, so that I can talk about whatever I feel like on the day. Many varieties of interest in the classification of varieties are obtained as Spec or Proj of a Gorenstein ring. In codimension ⩽3, the well known structure theory provides explicit methods of calculating with Gorenstein rings. In contrast, there is no useable structure theory for rings of codimension ⩾4. Nevertheless, in many cases, Gorenstein projection (and its inverse, Kustin–Miller unprojection) provide methods of attacking these rings. These methods apply to sporadic classes of canonical rings of regular algebraic surfaces, and to more systematic constructions of Q-Fano 3-folds, Sarkisov links between these, and the 3-folds flips of Type A of Mori theory.
  • Валерий Опойцев
    Зеркальная симметрия. Изучение системы по реакциям на внешние воздействия. Нечувствительность к группам преобразований. Законы сохранения в механике как следствие инвариантности к преобразованиям Галилея. Поднимемся от зеркальной симметрии к общему понятию симметрии, каковым считают явление неизменности/инвариантности того или иного объекта при определённых преобразованиях/изменениях. «Объектом» может быть что угодно: геометрическая фигура, уравнение движения, модель того или иного явления и т. п.
  • Арифметико-геометрическая прогрессия — последовательность чисел u_{n}, задаваемая рекуррентным соотношеним: u_{1}=a_{1}, u_{n+1}=qu_{n}+d, где q и d — постоянные числа. Частными случаями арифметико-геометрической прогрессии являются арифметическая прогрессия (при q=1) и геометрическая прогрессия (при d=0).
  • Валерий Опойцев
    Если что и даёт ясное представление о высшей математике, так это линейная алгебра. Барьер повседневности здесь преодолевается легко и просто. При этом оказывается, что удивительные вещи находятся не в туманной дали, а совсем рядом. В этом курсе: линейные задачи и векторы, линейные преобразования и матрицы, элементарные преобразования, теория определителей, системы уравнений, замена координат, собственные значения и собственные векторы, операторы на комплексной плоскости, спектральная теория, квадратичные формы, сопряжённое пространство, триангуляция Шура, функции от матриц, матричные ряды.
  • Анатолий Вершик
    Лишь недавно, и, как всегда одновременно и независимо, нескольким группам математиков понадобилось по разным поводам систематически изучать случайно выбранные подгруппы данной группы. Для докладчика этим поводом стала задача: найти инвариантные относительно сопряжения меры на решетке всех подгрупп данной группы. Эта задача важна для теории представлений (фактор-представления некоторых групп), и для самой теории динамических систем (вполне несвободные действия). Другие поводы — асимптотика чисел Бетти на локально симметрических пространствах, действия групп на деревьях, теория блужданий на случайных однородных пространствах и, по-видимому, это не всё. Доклад будет посвящен общим понятиям, разбору фундаментального примера, а именно, — что такое случайная подгруппа симметрической группы — конечной и бесконечной, и, наконец, объяснению того, как все это связано с теорией характеров.
  • Александр Буфетов
    Курс лекций читает Буфетов Александр Игоревич, доктор физико-математических наук. г. Москва, НМУ.
  • Теорема Нётер в теоретической физике – то же самое, что и естественный отбор в биологии. Если бы вы написали уравнение, которое кратко излагает все, что мы знаем о теоретической физике, то на одном его конце были бы имена Фейнмана, Шрёдингера, Максвелла и Дирака. Но если вы напишите фамилию Нётер с другой стороны уравнения, то это бы компенсировало их всех.
  • Евгений Смирнов
    Группы отражений являются дискретной группой движений пространства постоянной кривизны (сфера, евклидово или гиперболическое пространство), которая порождается множеством отражений. Группы отражений появляются удивительно часто в различных алгебраических задач.
  • Лев Беклемишев
    Аксиоматические системы, такие как арифметика Пеано и ее фрагменты, являются традиционными объектами изучения в математической логике. В докладе будет рассказано о сравнительно новом подходе к изучению таких систем с алгебраической точки зрения. Будут описаны алгебраические структуры, возникающие при изучении формальной доказуемости, и приведены некоторые применения этих структур к вопросу о порядках роста вычислимых функций для фрагментов арифметики и к построению простых утверждений комбинаторного характера, независимых от аксиом арифметики Пеано. Также будет рассказано о топологической точке зрения на алгебры доказуемости, которая приводит к изучению некоторого интересного класса пространств.
  • Георгий Шабат
    Пифагоровой тройкой называются три натуральных числа равные длинам сторон некоторого прямоугольного треугольника. Ещё древние вавилоняне умели находить такие тройки, причём огромных размеров и не пропорциональные друг другу. С современной точки зрения, такая задача равносильна нахождению точек с рациональными координатами на единичной окружности, стандартно вложенной в координатную плоскость. Успехи вавилонян объясняются тем, что множество таких точек бесконечно; в течение тысячелетий постепенно выяснилось, что большинство плоских кривых этим свойством окружности не обладает. Однако полная ясность наступила лишь в двадцатом веке: было обнаружено, что всё дело в топологии комплексификации кривой. На лекции будет рассказано об истории этих исследований и о проблемах, остающихся на сегодняшний день открытыми.
  • В прошлом двадцатом веке случилось событие, равного по масштабу которого в математике не было за всю ее историю. 19-го сентября 1994 года была доказана теорема, сформулированная Пьером де Ферма (1601-1665) более 350-ти лет назад в 1637 году. Она известна также как «последняя теорема Ферма» или как «большая теорема Ферма», поскольку есть еще так называемая "малая теорема Ферма". Ее доказал 41-летний, до этого момента в математическом сообществе ничем особо непримечательный, и по математическим меркам уже немолодой, профессор Принстонского университета Эндрю Уайлс. Удивительно, что про это событие толком не знают не только наши обычные российские обыватели, но и многие интересующиеся наукой люди, включая даже немалое число ученых в России, так или иначе использующих математику.
  • Почему минус один умножить на минус один равно плюс один? Почему минус один умножить на плюс один равно минус один? Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Мы сначала постараемся понять это, исходя из истории развития арифметики, а потом ответим на этот вопрос с точки зрения современной математики.
  • Георгий Шарыгин
    Большинство современных изложений неевклидовой геометрии (под этим термином обычно понимают геометрию Лобачевского), начинаются с построения той или иной модели этой геометрии, на основании которой уже выводят различные формулы и доказывают теоремы. Между тем, исторически дело происходило с точностью до наоборот: лишь доказав огромное количество странных и удивительных теорем, математики приступили к построению моделей, в которых эти теоремы выполнялись бы. Можно сказать, что именно существование (точнее, доказательство) такого большого количества удивительных фактов привело к пониманию необходимости построения моделей, что, в свою очередь поменяло навсегда не только наше представление о том, что такое геометрия, но и вызвало к жизни новые взгляды на предмет изучения всей математики. Поскольку я считаю, что, как и в биологии, в математике онтогенез повторяет филогенез, то и свою лекцию я посвящаю краткому изложению истории этого «филогенеза», что, я надеюсь будет полезно слушателям.
  • Алексей Савватеев
    Геометрия — классическая Евклидова, Лобачевского, проективная и сферическая — не получает достаточного внимания в программах современных мат.факультетов (не говоря уже о школах). В то же время она наглядна и на редкость красива. Многие утверждения визуально очевидны и в то же время неожиданные (почему самолёт, летящий из Иркутска в Лиссабон, стартует сперва в направлении Норильска?) За 8 лекций слушатели ознакомятся с начальными сведениями в этой области математики, берущей своё начало более двух тысячелетий назад. Закончим мы гораздо более сложным материалом, непосредственно выводящим на современные разделы науки. Будут затронуты основы теории групп и алгебр Ли.
  • Тони Ротман
    Scientific American
    В семнадцать лет Галуа многое сделал для создания раздела математики, который ныне даёт возможность проникнуть в сущность таких различных областей, как теория чисел, кристаллография, физика элементарных частиц и возможные позиции кубика Рубика. Известно и то, что в том же возрасте Галуа вторично провалился на экзамене по математике при поступлении в Эколь Политекник (Политехнический институт). Ему пришлось поступить в Эколь Нормаль (Высшую педагогическую школу), но в девятнадцать лет он был оттуда исключён, дважды арестован и заключён в тюрьму за политическую деятельность. Незадолго до дуэли он пережил разочарование в любви; в одном из своих последних писем он, по-видимому, связывает это с дуэлью. «Я умираю, — писал он, — жертвой подлой кокетки».
<<< |1|2|3|4|5|6|7|8|9|…|12| >>>