x, y, z

Алгебраическая сложность // Александр Разборов ≫ Похожее [3]

Публикации: 226
<<< |1|2|3|4|5|6|7|…|12| >>>
  • Иван Ященко
    Ященко Иван Валериевич, кандидат физико-математических наук. Летняя школа «Современная математика», г. Дубна, 2003 г.
  • Гаянэ Панина
    Некоторые комбинаторные схемы дают на выходе интересные выпуклые многогранники, имеющие отношение много к чему из современной математики. Перестановки дают пермутоэдр (перестановочный многогранник). Где он может пригодиться? (Конфигурационное пространство шарнирного многоугольника). Скобочные последовательности дают ассоциэдр (многогранник Сташефа). Зачем он нужен? («Чудесная» компактификация де Кончини–Прочезе.) Вторичный многогранник (secondary polytope Гельфанда–Капранова–Зелевинского) связан с совершенно иной комбинаторной схемой, и при этом обобщает предыдущие примеры.
  • Гаянэ Панина
    Как мы узнаем, выпуклые многогранники можно складывать и перемножать между собой. Далее, выпуклые многогранники можно умножать на рациональные числа. И наконец, что несколько неожиданно, для выпуклых многогранников можно определить логарифм и экспоненту. Вооружившись этими умениями, мы построим математически богатый замечательный объект — градуированную алгебру над Q — алгебру многогранников Питера Мак Маллена. С помощью этой алгебры мы докажем теорему об f-векторе выпуклого многогранника. Эта алгебра хорошо «отражается» в теории алгебраических торических многообразий.
  • Владимир Арнольд
    Лекцию читает Арнольд Владимир Игоревич (1937–2010), доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна, 20 июля 2003 г.
  • Алексей Зыкин
    Задача о конгруэнтных числах, упоминавшаяся еще в арабских математических текстах X века, состоит в следующем: для каких рациональных чисел s найдется прямоугольный треугольник с рациональными сторонами и площадью s? Удивительным образом эта проблема оказывается связанной с самой современной математикой — ее решение может быть получено по модулю так называемой гипотезы Берча и Свиннертона-Дайра, входящей в список «Проблем тысячелетия» института Клэя и за решение которой предлагается миллион долларов. Я попытаюсь рассказать о том, откуда берется такая связь. По пути нам встретится множество объектов и теорем, имеющих огромную важность в современной арифметической геометрии и теории чисел. Мы обсудим эллиптические кривые и закон сложения на них, теорему Морделла–Вейля, поговорим о том, как полезно смотреть на решения уравнений по модулю простого числа pp и упомянем теорему Минковского–Хассе о квадратичных формах, по пути нам понадобятся такие классические утверждения как теорема Дирихле о простых числах в арифметических прогрессиях и квадратичный закон взаимности. Наконец, если останется время, мы упомянем об L-функциях эллиптических кривых и модулярных формах, — то без чего невозможно представить современную теорию чисел.
  • Алексей Белов
    Общая постановка такова. Пусть P(x_1,…,x_n) — некоммутативный многочлен от матриц порядка n. Каким может быть множество его значений? И. Капланский и И. В. Львов поставили вопрос о том, что множество значений полилинейного многочлена есть векторное пространство (в этом случае оно совпадает либо с нулем, либо с пространством всех матриц, либо с пространством бесследовых матриц, либо со скалярными матрицами). Решение проблемы Капланского для матриц второго порядка над квадратично замкнутым полем оказалось весьма нетривиальным и глубоким. Вопросы, связанные с уравнениями в матрицах, помимо прикладного значения имеют отношение к конструкции алгебраически замкнутого тела, к теореме о свободе: если добавить новую некоммутативную переменную и соотношение, где та участвует, то это не приведет к появлению новых соотношений. Имеется ряд глубоких проблем, относящихся к множеству значений слов в группе — в частности, в матрицах второго порядка.
  • Михаил Цфасман
    Алгебраическая геометрия — раздел математики, который объединяет алгебру и геометрию. Главным предметом изучения классической алгебраической геометрии, а также в широком смысле и современной алгебраической геометрии, являются множества решений систем алгебраических уравнений. Современная алгебраическая геометрия во многом основана на методах общей алгебры (особенно коммутативной) для решения задач, возникающих в геометрии.
  • Аркадий Скопенков
    Предлагаются наброски элементарных доказательств: теоремы Гаусса о построимости правильных многоугольников; теоремы о неразрешимости уравнений в вещественных радикалах; теорем Руффини-Абеля и Галуа о неразрешимости уравнений в комплексных радикалах. Приводимые доказательства не используют термина «группа Галуа» (даже термина «группа»). Несмотря на отсутствие этого термина, идеи приводимых доказательств являются отправными для теории Галуа (которая вместе с теорией групп развилась из опыта группировки корней многочлена, с помощью которой их можно выразить через радикалы). Приводимые идеи являются отправными также для конструктивной теории Галуа, активно развивающейся в настоящее время.
  • Алексей Бондал
    Я постараюсь объяснить базисные проблемы и идеи гомологической алгебры и современную их интерпретацию с помощью производных категорий. Затем расскажу как надо думать об алгебраических многообразиях, чтобы применять методы гомологической алгебры и теории категорий к алгебраической геометрии. В качестве примера, объясню как можно описывать расслоения на проективных пространствах с помощью разбиений вещественного тора.
  • Юрий Матиясевич
    Метод координат, придуманный Рене Декартом, позволяет переформулировать любую задачу «на доказательство» из элементарной (грубо говоря, «школьной») геометрии в виде высказывания о вещественных числах. А что делать потом? Ведь уже для корней алгебраических уравнений пятой степени с одной неизвестной не существует явной формулы «в радикалах», а при переводе геометрических утверждений на алгебраический язык будут возникать сложные утверждения, содержащие много переменных, связанных как кванторами существования (это «неизвестные»), так и кванторами общности (это «параметры»). К счастью, польский логик и математик Альфред Тарский нашел в сороковые годы двадцатого столетия универсальный метод, позволяющий узнавать истинность или ложность любого высказывания про конечное множество вещественных чисел. Первоначальное авторское изложение этого метода занимало целую книгу и было очень трудно для восприятия. С тех пор многие авторы упрощали метод Тарского, и сегодня этот замечательный результат может быть доказан со всеми деталями за два часа и, надеюсь, понят старшеклассниками и младшекурсниками.
  • Владимир Успенский
    Эту формулу нашел Гаусс, он использовал ee в одном из своих доказательств квадратичного закона взаимности. Лишь через несколько лет он сумел доказать, что сумма S_m всегда положительна, так что S_m рано квадратному корню из m. Гаусс записал в дневнике, что его озарение было подобно “вспышке молнии”. Позднее многие известные математики предложили свои доказательства. Одно из самых элегантных принадлежит Дирихле, оно использует ряды Фурье. Предполагается знакомство с понятием сравнения по модулю. Полезно (но необязательно) иметь представление о малой теореме Ферма и о квадратичных вычетах по простому модулю. Знакомства с рядами Фурье не предполагается, необходимые сведения будут сообщены.
  • Иван Аржанцев
    Автоморфизм n-мерного аффинного пространства — это отображение (x_1,…,x_n) → (f_1,…,f_n), где f_i — многочлены от переменных x_1,…,x_n, для которого существует обратное отображение, также заданное многочленами. Мы начнем с полного описания автоморфизмов прямой, проблему якобиана. Определим ручные и дикие автоморфизмы, докажем, что все автоморфизмы плоскости являются ручными, и немного поговорим о доказательстве теоремы Шестакова и Умирбаева (2004) о том, что автоморфизм Нагаты трехмерного пространства (1972) является диким. Также мы обсудим свойство бесконечной транзитивности действия группы автоморфизмов и его связь с локально нильпотентными дифференцированиями. Будет сформулирован ряд известных открытых проблем аффинной алгебраической геометрии: проблема сокращения, проблема выпрямления, проблема линеаризации для торов и ее связь с градуировками.
  • Алексей Белов
    Произведение элементов пишут в виде слова, изображаемого отрезком. А что значит умножить элементы по кругу? Какой смысл имеет мозаика, составленная из таких кругов? Понимание такого рода вещей приводит к решению ряда открытых вопросов. Например, допустим мы хотим задать конечным числом соотношений полугруппу в которой степень любого элемента равна нулю. Конечным числом запрещенных подслов на прямой нельзя добиться того, чтобы были сколь угодно длинные слова без запрещенных подслов и в то же время не было таких периодических слов. В то же время на плоскости существуют конечные системы запретов допускающие только апериодические замощения. Но как умножать с разных сторон? Эти и другие вопросы предполагается обсудить.
  • Keith Conrad
    Когда Гаусс написал в 1801 г., что «Проблема различения простых и составных чисел и разложения последних на простые сомножители, как известно, является одной из самых важных и полезных в арифметике» он не знал, что 200 лет спустя эта проблема будет иметь огромное значение для криптографии: ее приложениями каждый день пользуются миллионы людей. Мы обсудим, как проверить простоту целых чисел детерминированными и вероятностными алгоритмами. От слушателей потребуется знакомство с арифметикой вычетов, включая малую теорему Ферма.
  • Иван Лосев
    Общепринятый формализм классической (гамильтоновой) механики подразумевает, что наблюдаемые образуют алгебру Пуассона, а эволюция системы задается уравнением Гамильтона. В общепринятом квантово-механическом формализме наблюдаемые — это самосопряженные операторы в гильбертовом пространстве, а эволюция задается уравнением Гейзенберга. Эти два уравнения похожи, но природа наблюдаемых совершенно разная. Это затрудняет переход как от классического к квантовому, так и обратно. По этой причине в [BFFLS] был предложен более простой (и более алгебраический) формализм для квантовой механики, в котором квантовая алгебра наблюдаемых становится деформацией классической. Я начну с того, что на примере потенциальной системы объясню возникновение скобки Пуассона и уравнения Гамильтона. Затем я поговорю о деформациях алгебр и объясню почему деформационный формализм с легкостью обеспечивает переход к квазиклассическому пределу.
  • Алексей Белов
    Рассмотрим s-порожденную группу (s<1) с тождеством x^n=1. Будет ли она конечна? Ответ положителен при n=2 (легкое упражнение), при n=3 (это уровень сложной задачи студенческой олимпиады), при n=4 (проблема стояла около 40 лет) при n=6 (проблема стояла около 50 лет). При n=5 ничего не известно! В середине 20 века П. С. Новиковым и С. И. Адяном было показано, что если n нечетное число ≥661 то такая группа может быть бесконечна. А. И. Мальцев рассматривал этот результат как основное событие алгебры 20 века (эту точку зрения разделяет, в частности, И. Рипс, чьи исследования были вдохновлены работами П. С. Новикова-С. И. Адяна). Недавно С. И. Адян улучшил оценку до 101.
  • Алексей Белов
    Планируется рассказать про свойства символьных последовательностей, и замечательные теоремы с ними связанные и их обобщения. Например, известно, что следующие классы слов почти эквивалентны: буквы a, b самым тщательным образом перемешаны, т.е. в кусках одинаковой длинны количество символов каждого сорта отличается не более чем на 1; количество различных подслов длины n равно n+1, т.е. минимально возможное; слово получается из поворота окружности на величину α при фиксации буквой a попадания на дугу длины α. Обобщение этой теоремы дает задача Арнольда о перекладывания отрезков. Красивые элементарные факты о поведении слов в которые добавляется не слишком много запретов, отражаются на теореме Голода–Шафаревича. Наверное, стоит упомянуть также теорему Ширшова о высоте.
  • Keith Conrad
    В кольце целых чисел каждый элемент (больше единицы) можно однозначно представить в виде произведения простых, с точностью до порядка сомножителей, это свойство называется факториальностью. Другие «области чисел» удовлетворяют этому свойству тоже, и факториальность вне рамок обыкновенных целых применяется в теории чисел, чтобы найти все решения некоторых диофантовых уравнений. К сожалению, свойство факториальности работает не во всех ситуациях, где возникает понятие простых. К счастью, используя более широкую точку зрения о значении разложения на простых (а именно, какие объекты мы хотим разлагать), можно спасти идею факториальности во многих случаях.
  • Евгений Смирнов
    Рассмотрим сумму двух эрмитовых матриц A и B. Это снова будет эрмитова матрица. В 1912 году Герман Вейль задался таким вопросом: что можно сказать о ее собственных значениях, если известны собственные значения матриц A и В? Во-первых, ясно, что след A+B будет равен сумме следов исходных матриц; во-вторых, наибольшее собственное значение A+B не превосходит суммы наибольших собственных значений A и B. А какие еще есть ограничения? В 1962 году Альфред Хорн выписал ряд неравенств на собственные значения матриц A, B и A+B и сформулировал гипотезу о том, что это полный набор условий. В 1999 году А.А.Клячко свел эту гипотезу к так называемой гипотезе о насыщении. Они же предложили описание неравенств Хорна при помощи диаграмм или «сот», которые имеют самое прямое отношение к теории представлений полной линейной группы GL(n).
  • Георгий Шабат
    Предполагается прочесть четыре лекции. Первые две будут популярны и общепонятны, а третья и четвёртая будут содержать довольно поверхностные обзоры некоторых перспективных направлений современной математики. 1. О геометрии над конечными полями. 2. Группы Шевалле и группы перестановок. 3. Линейная алгебра над F1 и гомотопическая топология. 4. Разное. Обобщённые кольца Дурова и F∅, F±1, F∞√1. Анализ на множестве корней из единицы (по Хабиро, Концевичу, Манину). О геометрии Аракелова. О тропической математике.
<<< |1|2|3|4|5|6|7|…|12| >>>