x, y, z

Алгебраическая сложность // Александр Разборов ≫ Похожее [12]

Публикации: 226
<<< |1|…|8|9|10|11|12|
  • Георгий Шабат
    Программа курса: История. Первые оценки. Проблема соизмеримости длины окружности с ее диаметром. Бесконечные ряды, произведения и другие выражения для π. Сходимость и ее качество. Выражения, содержащие π. Последовательности, быстро сходящиеся к π. Современные методы вычисления π, использование компьютеров. Об иррациональности и трансцендентности π и некоторых других чисел. Предварительных знаний для понимания курса не требуется.
  • Наталия Гончарук, Юрий Кудряшов
    Параллельный перенос, поворот, поворотная гомотетия, композиция инверсии и осевой симметрии — частные случаи дробно-линейных отображений комплексной плоскости (в общем случае дробно-линейное отображение плоскости — это отображение, при котором точка z=x+iy переходит в точку (az+b)/(cz+d)). Как известно, инверсия выворачивает круг наизнанку: то, что было внутри, оказывается снаружи, и наоборот. Говорят, что набор дробно-линейных отображений f_1,…,f_g порождает группу Шоттки, если есть набор замкнутых жордановых кривых γ_1,…,γ_g, таких что: 1) Области, ограниченные кривыми γ_j, не пересекаются; 2) Под действием отображения f_j точки внутри γ_{2j-1} оказываются снаружи γ_{2j}, а точки снаружи γ_{2j-1} — внутри γ_{2j}.
  • Владимир Тихомиров
    В докладе на примере геометрий Евклида и Лобачевского будет обсуждаться вопрос о том, что такое математическая истина и что означает «непротиворечивость геометрии». Будет рассказано об эволюции геометрических идей от Фалеса и Евклида до Пуанкаре и Гильберта, а также о специальной теории относительности Эйнштейна и об учебнике А. Н. Колмогорова по геометрии.
  • Андрей Болибрух
    В этих двух лекциях мы хотим рассказать вам о дифференциальных формах, расслоениях и связностях. Эти понятия сейчас активно используются в разных областях математики и физики, и нам хотелось бы хотя бы немного вас с ними познакомить. Для того чтобы наш рассказ не был излишне абстрактным, мы привязаться к такому физическому объекту, как электромагнитное поле, и показать вам как при попытке описания этого поля естественным путем возникают все перечисленные понятия.
  • Юлий Ильяшенко
    Теория Колмогорова–Арнольда–Мозера отвечает на вопросы типа «Могут ли планеты упасть на Солнце? Если да, то с какой вероятностью? И через какое время?» Математическая постановка задачи: предположим, что массы столь малы, что их притяжением друг к другу можно пренебречь. Тогда траектории движения планет можно посчитать; это сделал ещё Ньютон. Если перейти к реальному случаю, когда взаимное притяжение планет влияет на их орбиты, получится малое возмущение интегрируемой, т.е. точно решаемой, системы. Исследование малых возмущений интегрируемых систем классической механики Пуанкаре считал основной задачей теории дифференциальных уравнений. В лекциях будет рассказано, на уровне, доступном старшим школьникам, об основных идеях теории КАМ. Мы не поднимемся до задачи n тел и классической механики, но обсудим диффеоморфизмы окружности и основной шаг индукционного процесса, предложенного Колмогоровым для задач небесной механики.
  • Ольга Ромаскевич
    Если поступить очень жестоко и отобрать у математика карандаш и бумагу, он будет смотреть на небо в поисках новых задач. Вопрос о движении планет (в математическом мире встречающийся под кодовым названием «Задача n тел») является чрезвычайно сложным — настолько сложным, что даже для специальных подслучаев случая n=3 каждый год публикуется огромное количество работ. Разобрать все аспекты этой задачи невозможно даже за семестровый курс. Мы, однако, не испугаемся, и попробуем поиграться в математику, которая здесь возникает. Основной мотивацией для нас будет задача двух тел: задача о движении одной планеты вокруг Солнца в предположении о том, что как будто бы никаких других планет в округе нет.
<<< |1|…|8|9|10|11|12|