x, y, z

Алгебраическая сложность // Александр Разборов ≫ Похожее

Публикации: 226
|1|2|3|4|5|…|12| >>>
  • Александр Разборов
    Пожалуй ни одно другое достижение современной теории сложности вычислений не вызывает такого живого интереса и не менее яростных споров как модель квантовых вычислений. Предметом дискуссии, однако, в основном является возможность физической реализации квантового компьютера, чего мы, к счастью, касаться не будем. Вместо этого мы попробуем разобраться в чисто математических аспектах этой модели и, в частности, постараемся пройти столько из нижеследующего, сколько позволит время: Классические и квантовые схемы; Алгоритм Шора быстрого разложения чисел на множители: основные идеи; Квантовые оракулы и задача о скрытой подгруппе; Алгоритм квантового поиска Гровера.
  • Александр Разборов
    Теория сложности вычислений — бурно развивающаяся область теоретической информатики (theoretical computer science) и охватывает как чисто теоретические вопросы, так и вопросы, непосредственно связанные с практикой. Среди наиболее важных приложений этой теории можно назвать способы построения и анализа эффективных алгоритмов, а также современные криптографические методы. Поэтому знакомство с основами теории сложности, безусловно, полезно любому, кто собирается серьезно заниматься практическим программированием или теоретическими исследованиями.
  • Владимир Успенский
    Составленная из нулей и единиц цепочка 100010111011110100000111 выглядит более случайной, чем цепочка 010101010101010101010101. Возможно ли разделить все цепочки нулей и единиц на случайный и не случайные? Для конечных цепочек эта задача вряд ли осуществима. Однако можно пытаться решать её для бесконечных цепочек, т.е. для последовательностей. Иными словами, можно пытаться найти строгое математическое определение для понятия «случайная последовательностей нулей и единиц».
  • Александр Шень
    Природа статистических законов вызывала споры с самого рождения теории вероятностей и продолжает их вызывать. Эти философские споры привели к рождению интересной математической теории: алгоритмической теории вероятностей и информации, которая — в отличие от классической — пытается дать определение индивидуального случайного объекта. Мы обсудим основные понятия этой теории и их связь с основаниями и парадоксами теории вероятностей. Об этом в публичной лекции математика Александра Шеня, кандидата физико-математических наук, старшего научный сотрудник Лаборатории теории передачи информации и управления ИППИ РАН.
  • Четыре тысячи лет назад жители Вавилонии изобрели умножение. А в марте этого года математики усовершенствовали его. 18 марта 2019 два исследователя описали самый быстрый из известных методов перемножения двух очень больших чисел. Работа отмечает кульминацию давнишнего поиска наиболее эффективной процедуры выполнения одной из базовых операций математики. «Все думают, что метод умножения, который они учили в школе, наилучший, но на самом деле в этой области идут активные исследования», — говорит Йорис ван дер Хувен, математик из Французского национального центра научных исследований, один из соавторов работы.
  • Аскольд Хованский
    Сколько вещественных корней имеет заданный полином с вещественными коэффициентами? Замечательная теорема Штурма дает исчерпывающее решение этой задачи. “Теорема, имя которой я имею честь носить”, – так говорил об этом результате Штурм, который считал его главным достижением своей жизни. Совместна ли заданная система полиномиальных уравнений и неравенств от нескольких вещественных переменных? Теорема Зайденберга–Тарского, отвечающая на этот вопрос, является грандиозным многомерным обобщением теоремы Штурма. В лекциях будет рассказано новое наглядное решение задачи Штурма. Оно несложно переносится на многомерный случай и приводит к доказательству теоремы Зайденберга–Тарского.
  • Владимир Тихомиров
    Энтропия — мера неопределённости, мера хаоса. В естественных науках это мера беспорядка системы, состоящей из многих элементов; в теории информации — мера неопределённости какого-либо опыта, процесса или испытания, которые могут иметь разные исходы (а значит, мера количества информации); в математике — мера сложности объекта или процесса. Понятие энтропии было впервые введено в 1865 году Р. Клаузиусом в термодинамике, К. Шенноном в теории информации в 1949 г., в теории стохастичпеских процессов Колмогоровым, Гельфандом и Яглом в 1956 г., в функциональном анализе и теории динамических систем Колмогоровым в 1956–1958 гг. Между мирами полной детерминированности, изучаемой классическим анализом и миром хаоса, изучаемым теорией вероятностей, ныне перекидывается мост, который связан с понятием энтропии.
  • Иван Оселедец
    Возможно ли в линейной алгебре получение новых результатов? Почему в университетах этот курс учат неправильно? Какое матричное разложение является самым важным? Об умножении матрицы на вектор, быстрых алгоритмах и сингулярном разложении. рассказывает доктор физико-математических наук Иван Оселедец.
  • Николай Адрианов
    В этом курсе мы познакомимся с замечательной теорией NP-полных задач. Проблема (не)равенства классов P и NP — одна из «задач тысячелетия», за каждую из которых объявлен приз в миллион долларов. Мы разберемся в определении класса NP и научимся доказывать NP-полноту различных комбинаторных задач (классические теоремы Кука–Левина и Карпа). Особое внимание уделим задаче выполнимости булевых формул SAT. Мы поиграем с программами, решающими эту задачу, разберем какие алгоритмы они используют, как результатом их работы может быть доказательство, допускающее автоматическую проверку. Научимся сводить логические головоломки и математические задачи к SAT, поговорим о судоку, задачах теории Рамсея, недавнем продвижении в задаче о хроматическом числе плоскости и о «самом большом математическом доказательстве».
  • Алексей Сосинский
    В алгоритмической теории информации колмогоровская сложность объекта (такого, как текст) есть мера вычислительных ресурсов, необходимых для точного определения этого объекта. Колмогоровская сложность также известна как описательная сложность, сложность Колмогорова — Хайтина, стохастическая сложность, алгоритмическая энтропия или алгоритмическая сложность.
  • Лев Беклемишев
    Вычислимая функция f:N→N называется доказуемо рекурсивной в данной формальной теории T, если существует алгоритм её вычисления такой, что в T можно доказать утверждение «для любого x существует y такой, что f(x)=y». В математической логике такие функции изучаются по двум причинам. Во-первых, для данной программы нас часто интересует доказательство её корректности, в частности вопрос о том, завершает ли она работу при любых исходных данных. С другой стороны, варьируя функцию f мы можем ставить для теории T сколь угодно сложные (вплоть до невыполнимости) задачи на доказательство. Тем самым, доказуемо рекурсивные функции могут быть использованы для изучения различных формальных теорий. Такой подход приводит к наиболее впечатляющим на сегодняшний день примерам недоказуемых комбинаторных утверждений. Мы начнем с понятия машины Тьюринга и вычислимой функции. Разберемся, как формальная арифметика может говорить о вычислениях. Поймем, что для любых разумных систем аксиом T их запас доказуемо рекурсивных функций никак не может исчерпывать все вычислимые всюду определенные функции. Отсюда выведем первую теорему Гёделя о неполноте.
  • Александр Шень
    План лекций: Доказуемость и недоказуемость (почему некоторые утверждения нельзя ни доказать, ни опровергнуть?); Вычислимые функции (почему некоторые функции нельзя вычислить на компьютере?); Сложность алгоритмов; Формальные языки и исчисления.
  • Алексей Семёнов
    «Качественная» теория алгоритмов (не касающаяся понятия сложности вычислений) может быть построена на интуитивном представлении о том, что такое алгоритм. Такого представления, при некотором его уточнении, оказывается достаточно для того, чтобы доказать первые базовые теоремы теории алгоритмов. В лекции будет приведено указанное уточнение, определено понятие вычислимости и понятие породимости («выводимости в формальной системе»), доказано несколько теорем, другие теоремы — предложены в качестве задач. Будут приведены и примеры т.н. «уточнения понятия алгоритма». Для понимания лекции желательно умение читать по-русски, знание латинского алфавита и представление о натуральном ряде.
  • Владимир Успенский
    Знаменитая Теорема Гёделя о неполноте имеет две версии — синтаксическую (объявленную и доказанную самим Гёделем) и семантическую (чаще всего фигурирующую в популярных рассуждениях о великой Теореме). Семантическая версия утверждает, что какую бы систему формальных доказательств ни придумать, в языке найдутся истинные утверждения, не доказуемые в рамках предложенной системы. Таким образом, семантическая версия исходит из того, что некоторые выражения языка выражают осмысленные утверждения, являющиеся истинными или ложными. Синтаксическая версия не опирается на то, что какие бы то ни было выражения языка имеют какой-то смысл, она смотрит на выражения как на синтаксические конструкции, то есть как на цепочки символов, организованные по определённым правилам.
  • Владимир Успенский
    Целые числа, рациональные, алгебраические… Что дальше (оставаясь в пределах действительных чисел)? Дальше идут вычислимые действительные числа, т.е. такие действительные числа, которые можно в разумном смысле вычислить. «Можно вычислить» означает, что вычисление можно запрограммировать. Мыслимы различные подходы к тому, что именно надо программировать.
  • Алексей Семёнов
    Попытки дать математические определения понятий формального доказательства, истинности, формализованной деятельности по инструкции привели к построению математической логики и теории алгоритмов — области математики, результаты которой сформировали и продолжают формировать основы информатики и влиять на практическое использование цифровых технологий. Важнейшие результаты данной области, наряду с указанными определениями — это результаты о невозможности, в свою очередь тесно связанные с результатами об универсальности и диагональными конструкциями.
  • Михаил Раскин
    Вероника сидит в комнате. На улице дождь. Вероника ставит ТеХ и смотрит фехтование. Ей многое интересно. Когда закончится дождь? Не повисла ли установка ТеХа? Будет ли следующая атака по корпусу или по маске? Конечно, чтобы узнать ответ наверняка, Веронике придётся подождать. Двое физиков порождают случайный шум. Один ищет радиочастоту, где сигнал не портит помехи, его соседка водит счётчиком Гейгера. Есть много ситуаций, когда знание, происходящего не позволяет нам предсказывать дальнейшее. Я постараюсь объяснить, откуда (и как по-разному) они берутся.
  • Алексей Сосинский
    Курс занятий посвящен тому, что в математике сделать нельзя. Но речь пойдет не о запрещенных действиях (типа деления на ноль или квадратуры круга), а об отсутствии общих методов для решения некоторых широких классов задач. Начиная от определения вычислимой функции (через машину Тюринга), мы узнаем про существование универсальной вычислимой функции, и как следствие – о существовании не вычислимых функций. Отсюда мы поймем, какие задачи никакой компьютер (даже сколь угодно мощный) решить не может в принципе. Затем мы определим «Колмогоровскую сложность» и изучим ряд ее «нехороших» свойств, именно, не вычислимость некоторых связанных с ней характеристик. Эти свойства сыграют решающую роль в доказательстве теоремы Гёделя о неполноте – одного из самых значительных научных открытий ХХ-го века.
  • Лев Беклемишев
    Разные варианты выбора неопределяемых понятий. Система аксиом Тарского (по-видимому, самая простая из известных). Роль аксиом непрерывности с точки зрения различия логики первого и второго порядков. Модели и синтаксические интерпретации формальных теорий. Несколько классических интерпретаций, в том числе взаимная интерпретируемость гиперболической и евклидовой геометрии, элементарной геометрии Тарского и элементарной теории поля вещественных чисел, интерпретация теории поля вещественных чисел в арифметике натуральных чисел. Теоремы Тарского о полноте аксиоматики и о существовании алгоритма, распознающего истинность утверждений элементарной геометрии.
  • Стивен Вольфрам
    В вычислительной математике обычно ставится конкретная вычислительная задача, которая затем решается с целью получить результат — в точности как типичный сеанс работы в Mathematica. В чистой математике, напротив, берутся некоторые математические объекты, результаты или структуры, формируются некоторые гипотезы относительно них и потом приводятся доказательства верности выдвинутых гипотез. Большое число чистых математиков продолжает делать всё точно также, как это делалось веками — от руки и на бумаге. Как же эффективно привнести технологии в такой рабочий процесс?
|1|2|3|4|5|…|12| >>>