Потеря и спасение факториальности
В кольце целых чисел каждый элемент (больше единицы) можно однозначно представить в виде произведения простых, с точностью до порядка сомножителей, это свойство называется факториальностью. Другие «области чисел» удовлетворяют этому свойству тоже, и факториальность вне рамок обыкновенных целых применяется в теории чисел, чтобы найти все решения некоторых диофантовых уравнений.
К сожалению, свойство факториальности работает не во всех ситуациях, где возникает понятие простых. К счастью, используя более широкую точку зрения о значении разложения на простых (а именно, какие объекты мы хотим разлагать), можно спасти идею факториальности во многих случаях.
Мы обсудим этот феномен для квадратичных колец целых, и увидим как некоторая абелева группа точно измеряет отклонение нового типа факториальности от классической факториальности.
От слушателей потребуется знакомство с арифметикой вычетов.
Keith Conrad, Ph.D. Harvard University 1997.
Летняя школа «Современная математика», г. Дубна
20-26 июля 2017 г.
Похожее
-
Алексей Белов

Планируется рассказать про свойства символьных последовательностей, и замечательные теоремы с ними связанные и их обобщения. Например, известно, что следующие классы слов почти эквивалентны: буквы a, b самым тщательным образом перемешаны, т.е. в кусках одинаковой длинны количество символов каждого сорта отличается не более чем на 1; количество различных подслов длины n равно n+1, т.е. минимально возможное; слово получается из поворота окружности на величину α при фиксации буквой a попадания на дугу длины α. Обобщение этой теоремы дает задача Арнольда о перекладывания отрезков. Красивые элементарные факты о поведении слов в которые добавляется не слишком много запретов, отражаются на теореме Голода–Шафаревича. Наверное, стоит упомянуть также теорему Ширшова о высоте.
-

Почему минус один умножить на минус один равно плюс один? Почему минус один умножить на плюс один равно минус один? Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Мы сначала постараемся понять это, исходя из истории развития арифметики, а потом ответим на этот вопрос с точки зрения современной математики.
-
Иван Панин
В курсе будет рассказано о замечательной теории, созданной В. Воеводским. В частности, будут даны и мотивированы определения гомологий Суслина, мотивных гомологий и когомологий Воеводского. Будет дана конструкция его категории мотивов алгебраических многообразий. Все эти построения опираются на понятия «многозначных» отображений и пучков. Оба последние понятия будут введены, пояснены и снабжены примерами. От слушателей предполагается знание того, что такое поле, векторное пространство, абелева группа и умение работать с многочленами нескольких переменных.
-
Иван Аржанцев
Знакомая большинству из вас формула Лейбница утверждает, что (fg)′=f′g+fg′. А какие ещё операции обладают аналогичным свойством? Задавшись этим вопросом, естественно определить дифференцирование алгебры А как такое линейное отображение D из A в A, что D(fg)=D(f)g+fD(g) для любых f,g ∈ A. В этом курсе мы поговорим о дифференцированиях коммутативных алгебр, в первую очередь, алгебры многочленов от многих переменных. Хотелось бы описать все дифференцирования и изучить их свойства. Начала этой теории вполне элементарны. В то же время дифференцирования тесно связаны со сложными задачами алгебраической геометрии, теории групп преобразований и теории представлений.
-
Михаил Тёмкин

Приставляя тетраэдры друг к другу по граням можно получать примеры симплициальных комплексов — важного математического объекта. Раскрасим треугольники такого сооружения в чёрный и белый цвета и назовём раскраску хорошей, если каждый тетраэдр имеет поровну чёрных и белых граней. Оказывается, что в случае (стандартно симплициально разбитых) маломерных сфер множество белых треугольников оказывается объектом, достойным изучения: листом Мёбиуса или проективной плоскостью. При описании того, как именно эти объекты разбиты на треугольники у нас естественным образом возникнет икосаэдр — замечательный правильный многогранник. Исследование группы его самосовмещений позволит понять, сколько существует хороших раскрасок. По пути нам встретятся такие важные базовые понятия математики, как вышеупомянутые симплициальный комплекс и группа симметрий, действие и пр.
-
Александр Кузнецов
Система корней — этот конечный набор векторов в евклидовом пространстве, такой что для любого из этих векторов v зеркальная симметрия s_v относительно гиперплоскости H_v, перпендикулярной к v, сохраняет систему, причем для всякого вектора v' из системы s_v(v') − v' является целым кратным вектора v. Оказывается, системы корней можно полностью классифицировать. Возникает несколько «серий» (бесконечных последовательностей) и несколько «исключительных» систем. Мы поговорим о системах корней в пространствах произвольной размерности, их классификации, и возникающих в связи с этим диаграммах Дынкина.
-
Сергей Ландо
Числа Гурвица были введены А. Гурвицем в конце 19 века. Они перечисляют разветвленные накрытия двумерных поверхностей и имеют множество других проявлений — перечисляют разнообразные классы графов, являются коэффициентами связи в симметрических группах, представляют собой инварианты Громова–Виттена комплексных кривых.
-
Александр Гайфуллин
Классическая теорема Бойяи–Гервина (1830-е годы) утверждает, что любые два многоугольника равной площади равносоставлены друг с другом: первый многоугольник можно разрезать на конечное число многоугольных частей и затем сложить из этих частей второй многоугольник. Ещё Гаусс задавал вопрос, верно ли аналогичное утверждение для многогранников. А именно, его интересовало, можно ли доказать стандартную формулу для объёма пирамиды (одна треть произведения длины высоты на площадь основания) без использования предельного перехода, то есть разбив пирамиду на конечное число кусков, из которых можно сложить прямоугольный параллелепипед.
-
Владимир Успенский
Как известно, ежа нельзя причесать. Иными словами, на двумерной сфере нет касательного векторного поля, нигде не обращающегося в нуль. Трехмерная сфера ведет себя в этом отношении совсем иначе: на ней можно построить три касательных векторных поля, линейно независимых в каждой точке. Это означает, что трехмерная сфера параллелизуема. Возникает вопрос, для каких n сфера размерности n–1 параллелизуема. С этим вопросом тесно связан другой: для каких n на n-мерном эвклидовом пространстве можно ввести билинейное умножение, при котором произведение любых двух ненулевых векторов ненулевое. Рассматривая вещественные числа, комплексные числа, кватернионы или октонионы, мы видим, что это можно сделать, если n принимает одно из значений 1, 2, 4, 8. Оказывается, что этот список значений и является ответом на оба поставленных выше вопроса. Это трудная теорема. Ее можно доказать методами К-теории. Курс будет посвящен объяснению основных идей доказательства.
-
Александр Кузнецов
Инварианты Громова–Виттена – это замечательный набор численных инвариантов алгебраического (и, более общо, симплектического) многообразия, обобщающих индексы пересечения когомологических классов. Они позволяют ввести на кольце когомологий новое, так называемое квантовое умножение, являющееся деформацией обычного умножения в когомологиях, и являются первым шагом к пониманию зеркальной симметрии – удивительного явления, открытого физиками в конце 80-х годов прошлого века. Для алгебраического многообразия инварианты Громова–Виттена определяются через теорию пересечений пространства модулей кривых в этом многообразии. Я постараюсь объяснить, что такое пространство модулей кривых и как с ним обращаться, какие возникают сложности с вычислением инвариантов Громова–Виттена и как их преодолевают.
Далее >>>
|
|