x, y, z

Поиск > Публикации: теория_групп

Поля поиска:




Запрос:
Номер раздела:
Сортировать:
Публикации: 28
|1|2| >>>
ПубликацияРазделКомм.
Михаил Тёмкин
Приставляя тетраэдры друг к другу по граням можно получать примеры симплициальных комплексов — важного математического объекта. Раскрасим треугольники такого сооружения в чёрный и белый цвета и назовём раскраску хорошей, если каждый тетраэдр имеет поровну чёрных и белых граней. Оказывается, что в случае (стандартно симплициально разбитых) маломерных сфер множество белых треугольников оказывается объектом, достойным изучения: листом Мёбиуса или проективной плоскостью. При описании того, как именно эти объекты разбиты на треугольники у нас естественным образом возникнет икосаэдр — замечательный правильный многогранник. Исследование группы его самосовмещений позволит понять, сколько существует хороших раскрасок. По пути нам встретятся такие важные базовые понятия математики, как вышеупомянутые симплициальный комплекс и группа симметрий, действие и пр.
Математика ≫ Видео 0 Ø
Иван Аржанцев
В этом курсе изучается такой замечательный и вполне элементарный объект, как конечномерные коммутативные ассоциативные алгебры над комплексными числами. Здесь достаточно легко доказать первые структурные результаты, но получить полную классификацию едва ли возможно. Мы обсудим различные техники работы с конечномерными алгебрами (максимальные идеалы и локальные алгебры, фильтрации и градуировки, последовательность Гильберта-Самюэля и цоколь) и получим явное описание алгебр малых размерностей. Оказывается, конечномерные алгебры тесно связаны с действиями с открытой орбитой коммутативных групп матриц на аффинных и проективных пространствах. Мы объясним эту связь. В процессе объяснения естественно возникнут такие понятия как экспонента линейного оператора, представление группы и циклический модуль, алгебра Ли и ее универсальная обертывающая.
Математика ≫ Видео 0 Ø
Антон Джамай
Целью этого элементарного курса, рассчитанного на школьников, является познакомить слушателей с некоторыми основными и очень красивыми идеями современной абстрактной алгебры. Начиная с элементарных примеров, мы введем понятия группы, кольца, и поля, и заодно посмотрим на некоторые неожиданные свойства простых уравнений в кольцах. После этого мы рассмотрим разные примеры групп, таких как группы симметрий правильных многоугольников и многогранников, или группы перестановок. Мы увидим как можно записать операцию в группе с помощью таблиц Кэли, и посмотрим на более наглядное представление структуры группы с помощью диаграмм Кэли. Мы также рассмотрим примеры действия групп и связанные с этим понятия, а также некоторые красивые приложения (такие как счетная лемма Бернсайда).
Математика ≫ Видео 0 Ø
Сколькими способами можно раскрасить грани кубика, если есть три краски? Два варианта раскраски считаются разными, если один нельзя получить из другого переворачиваниями кубика. Грань красится целиком в один цвет. Описанная выше ситуация довольно типична, и потому нам бы хотелось найти какой-нибудь метод, который позволил бы сводить подобные вопросы к не слишком громоздкому перебору. Удивительным образом, на помощь приходит теория групп и так называемая формула Бернсайда.
Математика 0 Ø
Тони Ротман
Scientific American
В семнадцать лет Галуа многое сделал для создания раздела математики, который ныне даёт возможность проникнуть в сущность таких различных областей, как теория чисел, кристаллография, физика элементарных частиц и возможные позиции кубика Рубика. Известно и то, что в том же возрасте Галуа вторично провалился на экзамене по математике при поступлении в Эколь Политекник (Политехнический институт). Ему пришлось поступить в Эколь Нормаль (Высшую педагогическую школу), но в девятнадцать лет он был оттуда исключён, дважды арестован и заключён в тюрьму за политическую деятельность. Незадолго до дуэли он пережил разочарование в любви; в одном из своих последних писем он, по-видимому, связывает это с дуэлью. «Я умираю, — писал он, — жертвой подлой кокетки».
Математика 0 Ø
Из всех теорем Игоря Шафаревича мы выбрали одну, точнее, даже не теорему, а следствие из нее, мимоходом закрывшее изящный вопрос из теории групп, сформулированный за 60 лет до этого, — оно отрицательно решило общую проблему Бернсайда. Это красивая история, в которой Шафаревич появляется как известный актер в камео — с короткой и яркой репликой.
Математика 0 Ø
Александр Буфетов
Курс лекций читает Буфетов Александр Игоревич, доктор физико-математических наук. г. Москва, НМУ.
Математика ≫ Видео 0 Ø
Алексей Белов
Рассмотрим s-порожденную группу (s<1) с тождеством x^n=1. Будет ли она конечна? Ответ положителен при n=2 (легкое упражнение), при n=3 (это уровень сложной задачи студенческой олимпиады), при n=4 (проблема стояла около 40 лет) при n=6 (проблема стояла около 50 лет). При n=5 ничего не известно! В середине 20 века П. С. Новиковым и С. И. Адяном было показано, что если n нечетное число ≥661 то такая группа может быть бесконечна. А. И. Мальцев рассматривал этот результат как основное событие алгебры 20 века (эту точку зрения разделяет, в частности, И. Рипс, чьи исследования были вдохновлены работами П. С. Новикова-С. И. Адяна). Недавно С. И. Адян улучшил оценку до 101.
Математика ≫ Видео 0 Ø
Александр Буфетов, Роман Авдеев
Курс посвящён обобщению понятия вращения евклидова пространства. Оказывается, что с каждым евклидовым пространством можно связать новое пространство, объекты которого называются спинорами. Между исходным пространством и пространством спиноров имеется замечательная связь: всякому вращению исходного пространства можно сопоставить преобразование пространства спиноров, определённое однозначно с точностью до знака. Получаемые таким образом преобразования пространства спиноров образуют группу, называемую спинорной группой.
Математика ≫ Видео 0 Ø
Дмитрий Казаков
Как были открыты три поколения кварков? Какие теории описывают взаимодействие частиц? Какими свойствами обладают кварки? О типах элементарных частиц, теории групп и открытии трех поколений кварков рассказывает доктор физико-математических наук Дмитрий Казаков.
Физика ≫ Видео 0 Ø
Дмитрий Казаков
Как законы сохранения связаны с симметрией? На каких группах симметрии основана Стандартная модель? Какие примеры нарушенной симметрии существуют в физике элементарных частиц? О типах преобразований в физике частиц, лоренц-инвариантности и нарушениях симметрии рассказывает доктор физико-математических наук Дмитрий Казаков.
Физика ≫ Видео 0 Ø
Никон Курносов
Основы теории групп. Представления конечных групп. Точечные и пространственные группы. Приложения теории групп: теория молекулярных орбиталей, нормальные колебания (проекторы и применение в исследовании веществ). Приложения теории групп в физике твёрдого тела: кристаллическая структура, колебания решётки или откуда берутся полупроводники. Знаний по физике и химии, выходящих за рамки школьной программы не требуется. По математике могут пригодиться сведения из программы первого курса.
Математика ≫ Видео 0 Ø
Алексей Савватеев
Геометрия — классическая Евклидова, Лобачевского, проективная и сферическая — не получает достаточного внимания в программах современных мат.факультетов (не говоря уже о школах). В то же время она наглядна и на редкость красива. Многие утверждения визуально очевидны и в то же время неожиданные (почему самолёт, летящий из Иркутска в Лиссабон, стартует сперва в направлении Норильска?) За 8 лекций слушатели ознакомятся с начальными сведениями в этой области математики, берущей своё начало более двух тысячелетий назад. Закончим мы гораздо более сложным материалом, непосредственно выводящим на современные разделы науки. Будут затронуты основы теории групп и алгебр Ли.
Математика ≫ Видео 0 Ø
Алексей Савватеев
Теория Галуа — раздел алгебры, позволяющий переформулировать определенные вопросы теории полей на языке теории групп, делая их в некотором смысле более простыми. Теория Галуа даёт единый элегантный подход к решению классических задач: какие фигуры можно построить циркулем и линейкой? какие алгебраические уравнения разрешимы с помощью стандартных алгебраических операций (сложение, вычитание, умножение, деление и извлечение корня)?
Математика ≫ Видео 0 Ø
Алексей Савватеев
В миникурсе ликвидируются пробелы школьного образования, относящиеся к теории групп и к конкретным примерам групп. Будут установлены базовые факты про вычеты, доказана малая теорема Ферма, исследованы подгруппы групп перестановок на трёх и четырёх символах, введено понятие нормальной подгруппы данной группы и простоты группы. Затем будет доказано, что группа чётных перестановок на n≥5 символах — простая (что откроет желающим дорогу к вопросам о разрешимости алгебраических уравнений в радикалах), а также что подгруппа переносов плоскости (пространства) — нормальная в группе всех (аффинных) движений соответствующего объекта. Маломерные группы движений получат полную характеризацию (теорема Шаля и законы композиции движений разных видов).
Математика ≫ Видео 0 Ø
Иван Лосев
В лекциях вводятся основные сведения из теории представлений конечных групп, объясняется подход Вершика и Окунькова к представлениям симметрических групп, рассказывается о том, что происходит в положительной характеристике и при чем тут алгебры Ли. Курс должен быть понятен студентам, начиная с первого курса, хорошо освоившим курс алгебры.
Математика ≫ Видео 0 Ø
Евгений Фейгин
Математик Евгений Фейгин о применениях групп Ли, дифференциальной геометрии и касательных пространствах.
Математика ≫ Видео 0 Ø
Михаил Берштейн
В этой лекции преподаватель магистерской программы «Математическая физика» Сколтеха Михаил Берштейн рассказывает о фазовых переходах и модели Изинга.
Математика ≫ Видео 0 Ø
Наталия Гончарук, Юрий Кудряшов
Параллельный перенос, поворот, поворотная гомотетия, композиция инверсии и осевой симметрии — частные случаи дробно-линейных отображений комплексной плоскости (в общем случае дробно-линейное отображение плоскости — это отображение, при котором точка z=x+iy переходит в точку (az+b)/(cz+d)). Как известно, инверсия выворачивает круг наизнанку: то, что было внутри, оказывается снаружи, и наоборот. Говорят, что набор дробно-линейных отображений f_1,…,f_g порождает группу Шоттки, если есть набор замкнутых жордановых кривых γ_1,…,γ_g, таких что: 1) Области, ограниченные кривыми γ_j, не пересекаются; 2) Под действием отображения f_j точки внутри γ_{2j-1} оказываются снаружи γ_{2j}, а точки снаружи γ_{2j-1} — внутри γ_{2j}.
Математика ≫ Видео 0 Ø
Иван Лосев
Общепринятый формализм классической (гамильтоновой) механики подразумевает, что наблюдаемые образуют алгебру Пуассона, а эволюция системы задается уравнением Гамильтона. В общепринятом квантово-механическом формализме наблюдаемые — это самосопряженные операторы в гильбертовом пространстве, а эволюция задается уравнением Гейзенберга. Эти два уравнения похожи, но природа наблюдаемых совершенно разная. Это затрудняет переход как от классического к квантовому, так и обратно. По этой причине в [BFFLS] был предложен более простой (и более алгебраический) формализм для квантовой механики, в котором квантовая алгебра наблюдаемых становится деформацией классической. Я начну с того, что на примере потенциальной системы объясню возникновение скобки Пуассона и уравнения Гамильтона. Затем я поговорю о деформациях алгебр и объясню почему деформационный формализм с легкостью обеспечивает переход к квазиклассическому пределу.
Математика ≫ Видео 0 Ø
|1|2| >>>