x, y, z

Поиск > Публикации: вещественные_числа

Поля поиска:




Запрос:
Номер раздела:
Сортировать:
Публикации: 7
ПубликацияРазделКомм.
Валерий Опойцев
Комплексные числа: Как возникают и что обеспечивают. Как введение «странных» объектов проливает свет на реальные проблемы. Теория вещественных чисел: Пополнение прямой. Сечения Дедекинда. Зачем это нужно. Системы счисления: Что говорил Плутарх. Позиционная запись чисел. Десятичная система, двоичная. Игра «Ним» на шахматной доске. Двоичный выигрывающий алгоритм. Множества и операции: Наивная теория множеств. Сходство и различия с арифметическими операциями. Булевы структуры. Какими моделями их можно наполнять. Как эти модели перекликаются. Математическая индукция: Аксиома Пеано. Механизм индукции. Примеры.
Математика ≫ Видео 0 Ø
Галина Синкевич
Понятие числовой прямой сформировалось в конце XIX — начале XX веков. Мы рассмотрим этапы развития этого понятия в работах М. Штифеля (1544 г.), Галилея (1633 г.), Эйлера (1748 г.), Ламберта (1766 г.), Больцано (1830-е гг.), Мере (1869, 1872 гг.), Кантора (1872г.), Гейне (1872 г.), Дедекинда (1872 г.) и Вейерштрасса (с 1861 по 1885 гг).
Математика ≫ Видео 0 Ø
Лев Беклемишев
Разные варианты выбора неопределяемых понятий. Система аксиом Тарского (по-видимому, самая простая из известных). Роль аксиом непрерывности с точки зрения различия логики первого и второго порядков. Модели и синтаксические интерпретации формальных теорий. Несколько классических интерпретаций, в том числе взаимная интерпретируемость гиперболической и евклидовой геометрии, элементарной геометрии Тарского и элементарной теории поля вещественных чисел, интерпретация теории поля вещественных чисел в арифметике натуральных чисел. Теоремы Тарского о полноте аксиоматики и о существовании алгоритма, распознающего истинность утверждений элементарной геометрии.
Математика ≫ Видео 0 Ø
Виктор Клепцын
Действительное число можно сколь угодно точно приблизить рациональными. А насколько хорошим может быть такое приближение – в сравнении с его сложностью? Например, оборвав десятичную запись числа x на k-й цифре после запятой, мы получим приближение x≈a/10^k с ошибкой порядка 1/10^k. И вообще, зафиксировав знаменатель q у приближающей дроби, мы точно можем получить приближение с ошибкой порядка 1/q. А можно ли сделать лучше? Знакомое всем приближение π≈22/7 даёт ошибку порядка 1/1000 – то есть явно сильно лучше, чем можно было бы ожидать. А почему? Повезло ли нам, что у π такое приближение есть? Оказывается, что для любого иррационального числа есть бесконечно много дробей p/q, приближающих его лучше, чем 1/q^2. Это утверждает теорема Дирихле – и мы начнём курс с её немного нестандартного доказательства.
Математика ≫ Видео 0 Ø
Немецкий математик Леопольд Кронекер писал: «Бог создал целые числа, всё остальное — дело рук человека». Число — основное понятие математики, используемое для количественной характеристики, сравнения, нумерации объектов и их частей. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа с развитием науки значительно расширилось.
Математика 1 arshak
12 Мар 2018 20:00:15 >>>
Илья Щуров
Математик Илья Щуров о десятичных дробях, трансцендентности и иррациональности числа Пи.
Математика 0 Ø
Иэн Стюарт
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Математика ≫ Книги 0 Ø