x, y, z

Математика

Раздел
Сортировать:
|1|2|3|4|5|…|7| >>>
ПубликацияРазделКомм.
В математике полно странных числовых систем, о которых большинство людей никогда не слышало. Некоторые из них даже сложно будет представить. Но рациональные числа знакомы всем. Это числа для счёта предметов и дроби — все числа, известные нам с начальной школы. Но в математике иногда сложнее всего понять самые простые вещи. Они простые, как гладкая стена, без трещин и выступов, или других очевидных свойств, за которые можно было бы ухватиться. Выдающийся математик раскрыл подробности того, как его успехи в изучении тысячелетних математических вопросов связаны с концепциями, взятыми из физики
Математика 0 Нет
В физике есть уравнения, описывающие всё, от растяжения пространства-времени до полёта фотона. Однако же лишь один набор уравнений считается настолько математически сложным, что его выбрали в роли одной из семи «Задач тысячелетия», за решение которых Математический институт Клэя предлагает премию в миллион долларов: это уравнения Навье-Стокса, описывающие течение жидкостей. Почему же эти уравнения, описывающие такие знакомые явления, как вода, текущая по шлангу, математически понять гораздо сложнее, чем, допустим, уравнения поля Эйнштейна, включающие в себя такие ошеломляющие объекты, как чёрные дыры? Ответ кроется в турбулентности. Это явление испытывали мы все, в полёте в неоднородном воздухе на высоте в 10000 м, или при наблюдении за воронкой от уходящей в слив воды в ванне. Однако из осведомлённости не следует познание: турбулентность — одна из наименее понятных областей физического мира.
Математика 0 Нет
Уравнения Навье-Стокса при помощи нескольких лаконичных членов описывают одно из самых распространённых явлений физического мира: течение жидкостей. Эти уравнения используются для описания всего, от океанских течений и турбулентности, следующей за самолётом до потока крови в сердце. Хотя физики считают эти уравнения надёжными, как молоток, математики относятся к ним с недоверием. Для математика то, что эти уравнения вроде бы работают, мало что значит. Им нужны доказательства того, что уравнения безошибочны: что для любой жидкости и для долгосрочного прогноза, распространённого сколь угодно далеко в будущее, математика уравнений не подведёт.
Математика 0 Нет
Теплым весенним утром Джун Ху шел в зал Макдоннелла Пристонского университета, где его ждали студенты. Однако он не был уверен, что идет в нужном направлении. Ху работает в элитарном Институте перспективных исследований, который располагается неподалеку от студгородка Принстона. Будучи сотрудником института, Ху не обязан преподавать. Тем не менее, он вызвался прочитать студентам продвинутый курс по коммутативной алгебре.
Математика 0 Нет
В журнале «Квантик» № 5, 2016 была опубликована задача:«Робот-пылесос, имеющий форму круга, проехал по плоскому полу. Для каждой точки граничной окружности робота можно указать прямую, на которой эта точка оставалась в течение всего времени движения. Обязательно ли и центр робота оставался на некоторой прямой в течение всего времени движения?» Удивительно, но ответ отрицателен — центр мог двигаться не по прямой! Мы дадим несколько решений, начнём издалека, зато узнаем по дороге много интересного.
Математика 0 Нет
Татьяна Романовская
Окраска многих животных устроена причудливо и замысловато. На клеточном уровне ее возникновение описывается реакционно-диффузными моделями при помощи систем дифференциальных уравнений. В недавней работе группа ученых из Швейцарии детально изучила механизм формирования окраски глазчатых ящериц Timon lepidus. Оказалось, что это происходит по правилам, характерным для дискретного клеточного автомата, где в роли ячеек автомата выступают отдельные чешуйки кожи ящериц. Математическое моделирование позволило понять, что реакционно-диффузная система может порождать клеточный автомат благодаря особым условиям — в данном случае это подходящие размеры чешуек и толщина кожи ящериц внутри и на границе чешуек.
Математика 0 Нет
Роман Фишман
Возьмите простое решетчатое пространство. Задайте набор нехитрых правил. Запустите время. Вы получили клеточный автомат — почти что целый мир.
Математика 0 Нет
Ученые из Оксфордского университета заявили, что самым ранним известным употреблением цифры 0 для обозначения отсутствия значения разряда (как в числе 101) следует считать текст индийского манускрипта Бахшали.
Математика 0 Нет
Александр Марков
Генно-инженерные эксперименты показали, что количество пальцев у мышей зависит от двух взаимодействующих систем генов-регуляторов. По мере отключения этих генов пальцы становятся многочисленнее, короче и тоньше, а их концы соединяются костно-хрящевой дугой, так что в итоге кисть начинает напоминать плавник примитивной рыбы. Новые данные согласуются с гипотезой о том, что развитие пальцев основано на реакционно-диффузионном механизме самоорганизации, придуманном Аланом Тьюрингом в 1952 году.
Математика 0 Нет
Сергей Ландо
Сергей Ландо, докт. физ.-мат. наук, профессор факультета математики Высшей школы экономики, стоял у истоков возникновения факультета математики и исполнял обязанности декана с момента создания факультета в 2007 году до весны 2015 года. Людмила Сапченко расспросила Сергея Константиновича о его научной деятельности, о том, какое место занимают математические науки в современном мире, как создавался факультет, какие задачи ставятся перед факультетом в настоящее время.
Математика 0 Нет
Математик Мишель Рудольф-Лилит из Национального центра научных исследований Франции описала особенности окружностей, начерченных в дискретном пространстве, в качестве примера которого ученый рассмотрела пересечения улиц и проспектов Манхэттена — центрального района Нью-Йорка. Оказалось, что можно аналитически описать несколько алгоритмов, следуя которым, гипотетический таксист проедет вдоль линии, максимально приближенной к идеальной окружности, а при достаточно большом ее радиусе можно с хорошей точностью измерить число π.
Математика 0 Нет
В 1936 году советский инженер и учёный Владимир Лукьянов создал вычислительную машину, все математические операции в которой выполняла текущая вода. Гидравлический интегратор Лукьянова — первая в мире вычислительная машина для решения дифференциальных уравнений в частных производных — на протяжении полувека был единственным средством вычислений, связанных с широким кругом задач математической физики.
Информатика, компьютерные науки 0 Нет
Владимир Арнольд
Опыт создания учебников для средней школы учеными-математиками двадцатого века я считаю трагическим. Мой дорогой учитель, Андрей Николаевич Колмогоров, долго убеждал меня в необходимости дать наконец школьникам "настоящий" учебник геометрии, критикуя все существовавшие за то, что в них такие понятия, как "угол величиной в 721 градус", остаются без точного определения.
Математика 0 Нет
Владимир Арнольд
Я собираюсь рассказать сегодня о довольно грустных обстоятельствах, связанных с положением математического образования во всем мире. Больше всего я знаю положение, естественно, в России, а также во Франции и в Соединенных Штатах. Но процессы, о которых я буду говорить, примерно одновременно идут во всем мире. Они несколько невероятны, но то, что я буду рассказывать, как бы это ни было невероятно, — чистая правда.
Математика 0 Нет
Математика — это не только замечательная точная наука, но еще и удивительные человеческие судьбы. Девушка из Ирана по имени Мариам Мирзахани стала первой в мире женщиной, получившей Филдсовскую медаль — пожалуй, самую престижную награду в математике. Мариам показала как иранским ученым, так и простым людям, в частности женщинам, — чего может добиться человек собственным умом и собственной настойчивостью.
Математика 0 Нет
Дж. Д. Марри
Возможно, в основе широкого разнообразия раскрасок шкуры у животных, наблюдаемого в природе, лежит единый механизм формирования таких структур. Результаты математического моделирования этого механизма открывают биологам новые перспективы для исследований.
Математика 0 Нет
Александр Кириллов
О своем пути в математику, о первых поездках за рубеж, работе в США рассказал замечательный ученый, докт. физ.-мат. наук, профессор факультета математики Пенсильванского университета (США), главный научный сотрудник ИППИ РАН Александр Александрович Кириллов.
Математика 0 Нет
Владимир Тихомиров
В своей статье «Что такое математика» В. И. Арнольд писал: «Является ли математика перечислением следствий из произвольных аксиом или же ветвью естествознаия и теоретической физики, много обсуждался уже со времен Гильберта (придерживавшегося вслед за Декартом и, предвосхищая Бурбаки, первого мнения) и Пуанкаре (основателя современной математики, топологии, теории хаоса в динамических системах).» В лекции будет обсуждаться вопрос Арнольда, а заодно будет рассказано о самом Арнольде, а также о Николя Бурбаки, Давиде Гильберте, Рене Декарте и Анри Пуанкаре. И об их вкладе в науку.
Математика > Видео 0 Нет
Я давно хотела попасть в Летнюю школу «Современная математика» возле Дубны, которую вот уже 12-й год проводят Московский центр непрерывного изучения математики и Математический институт РАН. Как-то не получалось. В 2009 году я собрала отклики преподавателей и организаторов о Школе, которые говорили о том, как там здорово и интересно. Меня туда приглашал один из ее организаторов, человек, без сомнения, бывший душой Школы — Владимир Игоревич Арнольд. В этом году я решила, что надо, наконец, посмотреть, где же математики проводят лучшую часть лета, и, может быть, найти то место, где находится часть души Арнольда.
Математика 0 Нет
Сергей Рукшин
О том, как строить работу с одаренными детьми, на каких принципах удается воспитывать столь одаренных математиков как Григорий Перельман, Станислав Смирнов и другие, мы побеседовали с Сергеем Рукшиным, заслуженным учителем РФ, канд. физ.-мат. наук, членом Общественного совета при Министерстве образования и науки, основателем и директором Санкт-Петербургского городского математического центра для одаренных школьников, доцентом РГПУ им. А.И. Герцена. Беседовала Наталия Демина.
Математика 0 Нет
|1|2|3|4|5|…|7| >>>