x, y, z

Математика > Видео [5]

Сортировать:
<<< |1|2|3|4|5|6|7|8|9|…|16| >>>
ПубликацияРазделКомм.
Алексей Сосинский
Будет рассказано, что такое математическая теория узлов и зачем нужны их инварианты. Задача (трехмерная) о классификации узлов будет сведена к чисто комбинаторной двумерной задаче с помощью изящного инструмента — операций Райдемайстера. Затем будет показано, как вычисляется знаменитый инвариант узлов — полином Александера–Конвея. Будет построен (со всеми доказательствами) еще более знаментый инвариант узлов — полином Джонса, за который в 1992 году австралийский математик Воан Джонс получил медаль Фильдса. Это будет сделано с помощью т.н. скобки Кауфмана, т.е. с помощью соображений, тесно связанных со статистической физикой. Мы научимся вычислять этот полином и докажем ряд его свойств.
Математика > Видео 0 Нет
Михаил Цфасман
Алгебраическая геометрия — раздел математики, который объединяет алгебру и геометрию. Главным предметом изучения классической алгебраической геометрии, а также в широком смысле и современной алгебраической геометрии, являются множества решений систем алгебраических уравнений. Современная алгебраическая геометрия во многом основана на методах общей алгебры (особенно коммутативной) для решения задач, возникающих в геометрии.
Математика > Видео 0 Нет
Keith Conrad
ABC-гипотеза была сформулирована в 1985 г. и быстро стала центральной проблемой в теории чисел из-за её связей с другими нерешёнными проблемами, а также из-за того, что многие уже доказанные известные результаты были бы её следствиями. В 2012 году японский математик Мотидзуки выложил доказательство ABC-гипотезы в интернете, но математическое сообщество еще не пришло к единому мнению, правильно ли оно. В курсе мы введём ABC-гипотезу, опишем несколько эквивалентных её вариантов, и проследим ее связи с другими проблемами и теоремами в теории чисел. От слушателей потребуется знакомство с арифметикой вычетов и многочленами над полями.
Математика > Видео 0 Нет
Георгий Шабат
Программа курса: История. Первые оценки. Проблема соизмеримости длины окружности с ее диаметром. Бесконечные ряды, произведения и другие выражения для π. Сходимость и ее качество. Выражения, содержащие π. Последовательности, быстро сходящиеся к π. Современные методы вычисления π, использование компьютеров. Об иррациональности и трансцендентности π и некоторых других чисел. Предварительных знаний для понимания курса не требуется.
Математика > Видео 0 Нет
Keith Conrad
И целые числа, и многочлены (от одной переменной с коэффициентами в Q, R или Z/pZ) можно делить с остатком. Эта и подобные аналогии в структуре целых чисел и многочленов играли и продолжают играть важную роль в математике, особенно в теории чисел. В этом курсе мы исследуем такие аналогии в контексте теории чисел: на примере непрерывных дробей, уравнения Пелля, квадратичных вычетов, и abc-гипотезы. От слушателей требуется знакомство с пределами и арифметикой вычетов.
Математика > Видео 0 Нет
Владимир Успенский
Составленная из нулей и единиц цепочка 100010111011110100000111 выглядит более случайной, чем цепочка 010101010101010101010101. Возможно ли разделить все цепочки нулей и единиц на случайный и не случайные? Для конечных цепочек эта задача вряд ли осуществима. Однако можно пытаться решать её для бесконечных цепочек, т.е. для последовательностей. Иными словами, можно пытаться найти строгое математическое определение для понятия «случайная последовательностей нулей и единиц».
Математика > Видео 0 Нет
Галина Ершова, Георгий Малинецкий, Всеволод Твердислов
Великое в малом
Математика, как и многие науки, прошла свою эпоху эволюции. Разобраться в истории чисел помогают наиболее древние письменные знаки. Возьмем, к примеру, древние мифы. В 12 подвигах Геракла мы видим обыкновенную математику сквозь философию числа. Вереницы зверей, десятки, девятки и восьмерицы богов свидетельствуют о развитости математической мысли. А что об этом нам говорят "высокоразвитые цивилизации" Южной Америки? Что вообще таит в себе эволюционная историческая макродинамика?
Математика > Видео 0 Нет
Дмитрий Горбунов, Михаил Маров, Алексей Семихатов
На грани безумия
Как самостоятельная наука Геометрия зародилась еще в Древней Греции. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объема. Интересно, как бы отреагировал Эвклид на теорию четырехмерного подхода? Новые представления о мире связаны с многомерностью пространства. Великий французский архитектор Корбюзье как-то воскликнул: "Все вокруг геометрия!". В начале 21-го столетия мы с еще большим изумлением можем это повторить. Что же такое современная геометрия? И как она используется в разных науках?
Математика > Видео 0 Нет
Анатолий Ягола, Николай Нефёдов, Всеволод Твердислов
Великое в малом
Испокон веков математика считается главным посредником между человеком и природой. Именно в ней нашли своё отражение логика и порядок устройства Вселенной, которым подчинён весь окружающий мир. Эта наука настолько прочно проникла во все сферы жизни общества, что мы, даже не замечая этого, регулярно прибегаем к простейшим математическим вычислениям и терминологии. Точные формулы позволяют учёным детально описать, спрогнозировать и просчитать до мелочей результаты любого процесса и явления. А уж научно-технический прогресс своим стремительным развитием обязан исключительно математике, ведь без неё он бы так и остался фантастической идеей в умах миллионов. Ещё итальянский астроном Галилео Галилей сказал: "Великая книга природы написана математическими символами". Позднее эту гипотезу подтвердил на практике один из основоположников современной физики – Исаак Ньютон. Тем самым, навсегда сделав два важнейших научных направления единым целым. Но так ли велика роль "царицы наук" в современной физике? Какие непознанные горизонты математика ещё может приоткрыть учёным?
Математика > Видео 0 Нет
Валерий Опойцев
Игры и смешанные стратегии. Задача о покупке акций на рынке ценных бумаг. Увеличение гарантированного выигрыша за счёт приобретения убыточных акций. Равновесие по Нэшу как индивидуально разумное решение игры. Почему реальные системы часто «сидят» в таком равновесии. Рыночная модель. Дилемма заключённого. Игровые ситуации, где в первую очередь играет роль психология.
Математика > Видео 0 Нет
Валерий Опойцев
Зеркальная симметрия. Изучение системы по реакциям на внешние воздействия. Нечувствительность к группам преобразований. Законы сохранения в механике как следствие инвариантности к преобразованиям Галилея. Поднимемся от зеркальной симметрии к общему понятию симметрии, каковым считают явление неизменности/инвариантности того или иного объекта при определённых преобразованиях/изменениях. «Объектом» может быть что угодно: геометрическая фигура, уравнение движения, модель того или иного явления и т. п.
Математика > Видео 0 Нет
Алексей Семихатов
О математической физике рассказывает Алексей Семихатов, доктор физико-математических наук, главный научный сотрудник Физического института им. Лебедева РАН.
Физика > Видео 0 Нет
Keith Conrad
Когда Гаусс написал в 1801 г., что «Проблема различения простых и составных чисел и разложения последних на простые сомножители, как известно, является одной из самых важных и полезных в арифметике» он не знал, что 200 лет спустя эта проблема будет иметь огромное значение для криптографии: ее приложениями каждый день пользуются миллионы людей. Мы обсудим, как проверить простоту целых чисел детерминированными и вероятностными алгоритмами. От слушателей потребуется знакомство с арифметикой вычетов, включая малую теорему Ферма.
Математика > Видео 0 Нет
Thomas Fernique
Теорема о четырёх красках утверждает, что всякую расположенную на сфере карту можно раскрасить четырьмя красками так, чтобы любые две области, имеющие общий участок границы, были раскрашены в разные цвета. В виде проблемы она была сформулирована в 1852 году — и доказана в 1976-м лишь с помощью компьютера. Такое решение не всем понравилось, и некоторые до сих пор ждут доказательства, которое можно проверить без компьютера. Другие (как великий математик Владимир Воеводский) — наоборот, стали развивать автоматическую проверку правильности доказательств на компьютере… В курсе мы разберем доказательство теоремы о четырёх красках (это простая комбинаторика, доступная любому школьнику), а также обсудим сегодняшнее использование компьютера в математике (надо примерно знать, что такое компьютер).
Математика > Видео 0 Нет
Никон Курносов
Основы теории групп. Представления конечных групп. Точечные и пространственные группы. Приложения теории групп: теория молекулярных орбиталей, нормальные колебания (проекторы и применение в исследовании веществ). Приложения теории групп в физике твёрдого тела: кристаллическая структура, колебания решётки или откуда берутся полупроводники. Знаний по физике и химии, выходящих за рамки школьной программы не требуется. По математике могут пригодиться сведения из программы первого курса.
Математика > Видео 0 Нет
Юлий Ильяшенко
Эволюционные процессы происходят повсюду вокруг нас — от движения атомов до движения планет. Ньютон понял, что эти процессы описываются дифференциальными уравнениями, и что эти уравнения полезно решать. В последующие полтора столетия стало ясно, что большинство дифференциальных уравнений решить нельзя. Пуанкаре создал новую ветвь математики — качественную или геометрическую теорию дифференциальных уравнений, которая изучает свойства решений непосредственно по уравнению, минуя попытки это уравнение решить. Оказалось, что даже на качественном уровне поведение решений может быть очень сложным. Ситуация резко упрощается, если «все» уравнения заменить на «типичные». С физической точки зрения интересны именно типичные дифференциальные уравнения. В лекциях будет рассказано об эволюции этих концепций и сформулированы некоторые нерешенные проблемы.
Математика > Видео 0 Нет
Дмитрий Аносов
Как геометрические соображения помогают понять свойства решений дифференциальных уравнений. С этим и связаны слова «то решаем, то рисуем» в названии лекции. Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых достижениях XX века, включая понимание механизма возникновения «хаоса» в поведении детерминированных объектов.
Математика > Видео 0 Нет
Владимир Успенский
Эту формулу нашел Гаусс, он использовал ee в одном из своих доказательств квадратичного закона взаимности. Лишь через несколько лет он сумел доказать, что сумма S_m всегда положительна, так что S_m рано квадратному корню из m. Гаусс записал в дневнике, что его озарение было подобно “вспышке молнии”. Позднее многие известные математики предложили свои доказательства. Одно из самых элегантных принадлежит Дирихле, оно использует ряды Фурье. Предполагается знакомство с понятием сравнения по модулю. Полезно (но необязательно) иметь представление о малой теореме Ферма и о квадратичных вычетах по простому модулю. Знакомства с рядами Фурье не предполагается, необходимые сведения будут сообщены.
Математика > Видео 0 Нет
Галина Синкевич
Труды Кантора в России начали переводить и пересказывать с 1892 года в Одессе, Москве, Томске, Казани, Петрограде. Идеи теории множеств были с энтузиазмом восприняты в России как математиками, так и философами, в их популяризации приняли участие такие известные учёные, как И.Ю. Тимченко, С.О. Шатуновский, А.В. Васильев, П.А. Флоренский, Б.К. Млодзеевский, В.Л. Некрасов, И.И. Жегалкин, П.С. Юшкевич-отец, А.И. Фет, А.П. Юшкевич-сын, А.Н. Колмогоров, Ф.А. Медведев. В Москве в 1911 году возникла школа теории функций и дескриптивной теории множеств. В 1970 году академик Понтрягин оценил теорию множеств как ненужную для молодых математиков, и подготовленный перевод трудов Кантора не вышел в свет. Мы впервые расскажем о трагической судьбе этого перевода.
Математика > Видео 0 Нет
Владимир Протасов
Любой сигнал, будь то звук, изображение или другая функция, никогда не хранится в компьютере по точкам. Это дорого и неэффективно. Сигнал раскладывается в сумму других, «базовых» функций, и хранятся коэффициенты разложения. Главный вопрос — какую систему базовых функций использовать? И как построить хорошую систему, чтобы сигнал быстро и качественно воспроизводился и при этом занимал мало памяти? За это отвечает мощная и красивая математическая теория. В течение десятилетий базовыми функциями были синус и косинус, что естественно, учитывая природу звука. Это — ряды Фурье, изобретенные более 200 лет назад. Однако, к середине XX века стало ясно, что они не отвечают современным запросам.
Математика > Видео 0 Нет
<<< |1|2|3|4|5|6|7|8|9|…|16| >>>