x, y, z

Что делает сложнейшие уравнения физики настолько сложными? > Похожее

Публикации: 251
|1|2|3|4|5|…|13| >>>
  • Уравнения Навье-Стокса при помощи нескольких лаконичных членов описывают одно из самых распространённых явлений физического мира: течение жидкостей. Эти уравнения используются для описания всего, от океанских течений и турбулентности, следующей за самолётом до потока крови в сердце. Хотя физики считают эти уравнения надёжными, как молоток, математики относятся к ним с недоверием. Для математика то, что эти уравнения вроде бы работают, мало что значит. Им нужны доказательства того, что уравнения безошибочны: что для любой жидкости и для долгосрочного прогноза, распространённого сколь угодно далеко в будущее, математика уравнений не подведёт.
  • Сергей Куксин
    Доклад посвящен обсуждению свойств нелинейных уравнений в частных производных со случайной правой частью, отличающих их от не-случайных уравнений. Основным примером будет служить двухмерная система Навье–Стокса. Изложение элементарное.
  • Владимир Захаров
    Программа Гордона
    Что такое вихревая турбулентность и чем она отличается от волновой? Чем определяется порядок величины диссипации энергии в турбулентном потоке? Почему турбулентность до сих пор остается «белым пятном» в классической механике? О физических принципах, лежащих в основе этого явления, — академик РАН Владимир Захаров.
  • Сергей Куксин
    Основным сюжетом, которому будет посвящена лекция, будет теория турбулентности, представляющая собой огромный вызов современной математике. А именно, в настоящий момент существует — созданная Колмогоровым, Онзагером и Дж. Тейлором — феноменологическая теория турбулентности. Эта теория, достаточно адекватно описывает явления, возникающие при нарастании скоростей (или, что то же самое, при уменьшении вязкости жидкости). Однако со времён её создания не было никаких продвижений в строгом её обосновании. Это — замечательный вызов!
  • Дмитрий Аносов
    Как геометрические соображения помогают понять свойства решений дифференциальных уравнений. С этим и связаны слова «то решаем, то рисуем» в названии лекции. Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых достижениях XX века, включая понимание механизма возникновения «хаоса» в поведении детерминированных объектов.
  • Юлий Ильяшенко
    Эволюционные процессы происходят повсюду вокруг нас — от движения атомов до движения планет. Ньютон понял, что эти процессы описываются дифференциальными уравнениями, и что эти уравнения полезно решать. В последующие полтора столетия стало ясно, что большинство дифференциальных уравнений решить нельзя. Пуанкаре создал новую ветвь математики — качественную или геометрическую теорию дифференциальных уравнений, которая изучает свойства решений непосредственно по уравнению, минуя попытки это уравнение решить. Оказалось, что даже на качественном уровне поведение решений может быть очень сложным. Ситуация резко упрощается, если «все» уравнения заменить на «типичные». С физической точки зрения интересны именно типичные дифференциальные уравнения. В лекциях будет рассказано об эволюции этих концепций и сформулированы некоторые нерешенные проблемы.
  • Юлий Ильяшенко
    Как менялись наши представления об аттракторах? Чего мы ожидаем от аттракторов? Предполагается, что слушатели знают определение и свойства компактных множеств в евклидовом пространстве, а также знакомы с определениями и примерами гомеоморфизмов и диффеоморфизмов. Последние определения будут даны в курсе, но лучше знать их заранее.
  • Дмитрий Аносов
    В книге рассказывается о дифференциальных уравнениях. В одних случаях автор объясняет, как решаются дифференциальные уравнения, а в других—как геометрические соображения помогают понять свойства их решений. (С этим и связаны слова «то решаем, то рисуем» в названии книги.) Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых достижениях XX века, включая понимание механизма возникновения «хаоса» в поведении детерминированных объектов. Книга рассчитана на интересующихся математикой школьников старших классов. От них требуется лишь понимание смысла производной как мгновенной скорости.
  • Джулио М. Оттино
    Простое двумерное периодическое движение вязкой жидкости может стать хаотическим, что приведёт к эффективному перемешиванию. Эксперименты и компьютерное моделирование проясняют механизм этого явления.
  • Физик Вернер Гейзенберг как-то сказал: «Когда я предстану перед Богом, я задам ему два вопроса: зачем было создавать относительность и зачем – турбулентность? И я искренне полагаю, у Него будет ответ только на первый вопрос». Как бы ни сложно было понять турбулентность математически, мы можем изобразить её при помощи искусства. Наталья Сент-Клер покажет, как Ван Гог в своих работах смог поймать глубину природы движения, течения и света.
  • Сергей Курдубов
    Сергей Курдубов расскажет, как простые уравнения приводят к сложным решениям, на примере задачи Ситникова. Вы узнаете: Какие бывают виды уравнений; Решение каких уравнений число, а каких — функция; Когда можно взять производную, а интеграл нет; Что значит «дифференциальное уравнение»; Чем занимаются ученые, если все законы известны; Когда не поможет даже самый мощный компьютер будущего.
  • Владимир Захаров
    Лекция академика РАН, доктора физико-математических наук, председателя научного совета РАН по нелинейной динамике, зав. Сектором математической физики в Физическом институте РАН им. Лебедева, профессора Университета Аризоны (США), дважды лауреата Государственной премии, лауреата медали Дирака Владимира Евгеньевича Захарова, прочитанной 27 мая 2010 года в Политехническом музее в рамках проекта “Публичные лекции Полит.ру”.
  • Владимир Буданов, Аркадий Липкин, Алексей Семихатов
    На грани безумия
    Путешественник в прошлое случайно раздавил бабочку. Незначительная оплошность. Однако она повлекла катастрофические изменения в далеком будущем. Насекомое из рассказа Рэя Бредбери "И грянул гром" породило термин "эффект бабочки", широко известный в естественных науках. Сюжет писателя-фантаста стал предисловием к дискуссии экспертов о свойстве хаотических систем. В чем секреты и закономерности хаотичных явлений?
  • Сергей Куксин
    Международная научная конференция «Дни классической механики» г. Москва, МИАН, ул. Губкина, д. 8 26 января 2015 г.
  • Эмиль Ахмедов
    XVIII–XIX века прошли под знаком успеха механики Ньютона, которая показала поразительную эффективность при описании движения планет Солнечной системы. Но наука начала двигаться вперед, когда отказалась от этого механистического подхода. Под знаком всего этого происходящего возник такой парадокс Лапласа, который говорит о том, что везде отсутствует воля. То есть человек не может поступать по собственной воле, все предопределено и предсказуемо. Физик Эмиль Ахмедов о дифференциальных уравнениях, идеальных линиях и точках и решении парадокса Лапласа.
  • Провернувшись несколько кругов с колесом, куда полетит камень, когда выскочит из протектора? Против направления движения мотоцикла или по направлению? Как известно, свободное движение тела начинается по касательной к той траектории, по которой оно двигалось. Касательная к циклоиде всегда направлена по направлению движения и проходит через верхнюю точку производящей окружности. По направлению движения полетит и наш камушек. Помните, как Вы катались в детстве по лужам на велосипеде без заднего крыла? Мокрая полоска на вашей спине является житейским подтверждением только что полученного результата.
  • Хаос — математический фильм, состоящий из девяти глав, по тринадцать минут каждая. Это фильм для широкой публики, посвященный динамическим системам, эффекту бабочки и теории хаоса.
  • Андрей Болибрух
    В этих двух лекциях мы хотим рассказать вам о дифференциальных формах, расслоениях и связностях. Эти понятия сейчас активно используются в разных областях математики и физики, и нам хотелось бы хотя бы немного вас с ними познакомить. Для того чтобы наш рассказ не был излишне абстрактным, мы привязаться к такому физическому объекту, как электромагнитное поле, и показать вам как при попытке описания этого поля естественным путем возникают все перечисленные понятия.
  • Математики решили задачу о поведении мыльной пленки в гибком каркасе. Эта задача — более сложный вариант классической задачи Плато, в которой требуется доказать, что для любого замкнутого жесткого каркаса в пространстве найдется поверхность минимальной площади с границей на каркасе. Именно такую минимальную поверхность повторяет мыльная пленка, которая образуется, если окунуть каркас в мыльный раствор.
  • Совсем недавно математики рассказали о решении важной задачи из теории минимальных поверхностей — о поведении мыльной пленки на гибком каркасе. Как часто бывает в физике, эта теоретическая задача связана с гораздо более широким кругом явлений, чем простое возникновение мыльных пленок: от динамики молекул до гравитационных полей черных дыр. Мы предлагаем вам небольшой экскурс в одну из самых красивых задач математики — задачу Плато о минимальных поверхностях.
|1|2|3|4|5|…|13| >>>