x, y, z

Математический анализ // Владимир Зорич > Похожее

Публикации: 44
|1|2|3| >>>
  • Александров П. С., Маркушевич А. И., Хинчин А. Я.
    Сборник книг предназначается для людей, изучавших элементарную математику и уже ставших или готовящихся стать преподавателями элементарной математики. Логика нашего издания - это логика систематического, по возможности простого и доступного изложения тех вопросов математической науки, из которых строится школьный курс, а также и тех, которые хотя и не находят в этом курсе прямого выражения, однако необходимы для правильного и сознательного его понимания и создают перспективы для дальнейшего развития содержания и методов школьного курса.
  • Гусев Д. А.
    В книге изложены философские идеи мыслителей Древнего мира, Средних веков, эпохи Возрождения, Нового времени и современной эпохи. Рассмотрены аристотелевская, ньютоновская и эйнштейновская научные картины мира. представлен краткий словарь терминов. Для школьников, учащихся средних специальных учебных заведений, студентов вузов, а также для всех, кто интересуется философией.
  • Проскуряков И. В.
    Целью этой книги является строгое определение чисел, многочленов и алгебраических дробей и обоснование их свойств, уже известных из школы, а не ознакомление читателя с новыми свойствами. Поэтому читатель не найдет здесь новых для него фактов (за исключением, быть может, некоторых свойств, действительных и комплексных чисел), но узнает, как доказываются вещи, хорошо ему известные, начиная с «дважды два — четыре» и кончая правилами действий с многочленами и алгебраическими дробями. Зато читатель познакомится с рядом общих понятий, играющих в алгебре основную роль.
  • Владимир Протасов
    Любой сигнал, будь то звук, изображение или другая функция, никогда не хранится в компьютере по точкам. Это дорого и неэффективно. Сигнал раскладывается в сумму других, «базовых» функций, и хранятся коэффициенты разложения. Главный вопрос — какую систему базовых функций использовать? И как построить хорошую систему, чтобы сигнал быстро и качественно воспроизводился и при этом занимал мало памяти? За это отвечает мощная и красивая математическая теория. В течение десятилетий базовыми функциями были синус и косинус, что естественно, учитывая природу звука. Это — ряды Фурье, изобретенные более 200 лет назад. Однако, к середине XX века стало ясно, что они не отвечают современным запросам.
  • Юрий Ловягин
    Планируется обсуждения процесса эволюции от принципа исчерпывания через понятие актуального бесконечно малого количества к нестандартному анализу А. Робинсона и его современных модернизациях. Основное внимание будет уделено обоснованию понятия вещественного числа, моделированию свойств вещественных чисел в теории гиперрациональных чисел, связи этого с понятием конструктивного вещественного числа и компьютерными вычислениями.
  • Галина Синкевич
    Понятие числовой прямой сформировалось в конце XIX — начале XX веков. Мы рассмотрим этапы развития этого понятия в работах М. Штифеля (1544 г.), Галилея (1633 г.), Эйлера (1748 г.), Ламберта (1766 г.), Больцано (1830-е гг.), Мере (1869, 1872 гг.), Кантора (1872г.), Гейне (1872 г.), Дедекинда (1872 г.) и Вейерштрасса (с 1861 по 1885 гг).
  • Владимир Протасов
    Вариационное исчисление — наука о поиске минимума функции в бесконечномерном пространстве. В отличие от привычных нам задач на минимум, когда нужно оптимальным образом выбрать число (параметр), или, скажем, точку на плоскости, в вариационных задачах требуется найти оптимальную функцию. При этом, одним и тем же набором средств решаются задачи самого разного происхождения: из классической механики, геометрии, математической экономики и т.д. Мы начнем со старых задач, известных с XVII века, и, перекидывая мостки от одной задачи к другой, быстро доберемся до современных результатов и нерешенных проблем.
  • Владимир Протасов
    Каким образом фотография с разрешением 8 Мп может поместиться в файл размером 2 Мб? Современные программы позволяют сжать изображение не только в 4, но и в 20–30, а иногда и в 100 раз без существенной потери качества. То же происходит со звуковыми файлами при записи музыки, с объёмными изображениями в компьютерной томографии и т.д. За всем этим стоит мощная и достаточно красивая математическая теория. В течение многих лет алгоритмы сжатия и передачи информации строились на основе разложения функций в ряды Фурье — в суммы по системе синусов и косинусов. Главным инструментом было быстрое преобразование Фурье — комбинаторный алгоритм для вычисления коэффициентов разложения. В конце 20 века стало ясно, что ряды Фурье, изобретенные более 200 лет назад, уже не отвечают современным запросам.
  • Астроном и историк науки Матье Оссендрайвер (Mathieu Ossendrijver) из Берлинского университета имени Гумбольдта обнаружил на ранее не изученных вавилонских клинописных табличках, датированных 350 — 50 годами до н.э., описание нетривиального геометрического метода вычисления положения Юпитера. В нем использованы концепции, впервые появившиеся в современной науке лишь в середине XIV века, а затем ставшие краеугольным камнем математического анализа.
  • Аскольд Хованский
    Сколько вещественных корней имеет заданный полином с вещественными коэффициентами? Замечательная теорема Штурма дает исчерпывающее решение этой задачи. “Теорема, имя которой я имею честь носить”, – так говорил об этом результате Штурм, который считал его главным достижением своей жизни. Совместна ли заданная система полиномиальных уравнений и неравенств от нескольких вещественных переменных? Теорема Зайденберга–Тарского, отвечающая на этот вопрос, является грандиозным многомерным обобщением теоремы Штурма. В лекциях будет рассказано новое наглядное решение задачи Штурма. Оно несложно переносится на многомерный случай и приводит к доказательству теоремы Зайденберга–Тарского.
  • Галина Синкевич
    Труды Кантора в России начали переводить и пересказывать с 1892 года в Одессе, Москве, Томске, Казани, Петрограде. Идеи теории множеств были с энтузиазмом восприняты в России как математиками, так и философами, в их популяризации приняли участие такие известные учёные, как И.Ю. Тимченко, С.О. Шатуновский, А.В. Васильев, П.А. Флоренский, Б.К. Млодзеевский, В.Л. Некрасов, И.И. Жегалкин, П.С. Юшкевич-отец, А.И. Фет, А.П. Юшкевич-сын, А.Н. Колмогоров, Ф.А. Медведев. В Москве в 1911 году возникла школа теории функций и дескриптивной теории множеств. В 1970 году академик Понтрягин оценил теорию множеств как ненужную для молодых математиков, и подготовленный перевод трудов Кантора не вышел в свет. Мы впервые расскажем о трагической судьбе этого перевода.
  • Галина Синкевич
    Теорему Ролля впервые доказал Вейерштрасс, а теорема Больцано–Коши была сформулирована Роллем за 127 лет до них. Производное уравнение умели составлять за 100 лет до появления дифференциального исчисления. Как же развивались эти идеи? Что же сделал Мишель Ролль, сын сапожника и академик?
  • Владимир Успенский
    В курсе будет изложена история гипотезы Пуанкаре — с точными определениями и формулировками, но без полных доказательств. Будут объяснены понятия, необходимые для понимания различных версий (топологическая, гладкая, кусочно-линейная) гипотезы Пуанкаре: многообразие, гомотопическая эквивалентность, фундаментальная группа. Слушатели узнают о классификации двумерных компактных многообразий («сферы с ручками и пленками Мебиуса»), об экзотических гладкостях на сферах и на R^4 и о том, что одна из версий гипотезы Пуанкаре (гладкая 4-мерная) остается открытой. Мы обсудим также различные версии проблемы Шенфлиса: ограничивает ли вложенная (n–1)-мерная сфера в R^n вложенный n-мерный шар? Некоторые из этих версий остаются открытыми проблемами.
  • Галина Синкевич
    Язык «ε–δ» возник в работах математиков XIX века. Хотя обозначения впервые ввёл Коши, эпсилонтика как метод сформировалась в лекциях Вейерштрасса. Больцано в 1817 и Коши в 1821 году дали определения предела в качественной форме и определения непрерывной функции на языке приращений; Коши в 1823 году применил ε и δ при улучшении доказательства Ампера теоремы о среднем, но Коши использовал ε и δ как конечные оценки погрешности, где δ не зависит от ε. Процесс осознания понятий непрерывности и равномерной непрерывности функции шёл сложным путём в работах Стокса, Зайделя, Римана, Дирихле, Раабе и многих других. В полной мере метод «эпсилон-дельта» проявился в определении предела только у Вейерштрасса в 1861 году. Легенда о принадлежности метода Огюстену Коши возникла в начале XX века в работе Лебега и затем многократно повторялась. Обращение к первоисточникам позволило исправить эту историческую ошибку.
  • Галина Синкевич, Владимир Тихомиров
    Научная биография Карла Вейерштрасса, его основные работы, влияние его учения на развитие математики. Вейерштрасс и теория вещественного числа, зарождение общей топологии, начала математического анализа, комплексный анализ, теория эллиптических функций, теория чисел, вариационное исчисление. Размышления Вейерштрасса о математике и математической жизни.
  • Беляев Е. А., Перминов В. Я.
    Монография посвящена философским и методологическим проблемам математики. Кратко прослеживается эволюция воззрений на математику с античности до настоящего времени и рассматриваются наиболее важные проблемы современного ее понимания: отношение математических понятий к логике, к эмпирическому знанию и к категориальным представлениям о мире. Выясняется связь методологических идей в математике с философскими воззрениями на сущность ее предмета и метода.
  • Морис Клайн
    Книга известного американского ученого, почетного профессора математики Нью-Йоркского университета, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее места в физических науках. Имя автора давно и хорошо известно советским и российским читателям.
  • Дмитрий Аносов
    В книге рассказывается о дифференциальных уравнениях. В одних случаях автор объясняет, как решаются дифференциальные уравнения, а в других—как геометрические соображения помогают понять свойства их решений. (С этим и связаны слова «то решаем, то рисуем» в названии книги.) Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых достижениях XX века, включая понимание механизма возникновения «хаоса» в поведении детерминированных объектов. Книга рассчитана на интересующихся математикой школьников старших классов. От них требуется лишь понимание смысла производной как мгновенной скорости.
  • Андрей Райгородский
    В сороковые годы XX века известными математиками П. Эрдёшом и Г. Хадвигером была поставлена одна из самых коротко формулируемых и в то же время одна из самых ярких и трудных задач комбинаторной геометрии — задача о нахождении хроматического числа евклидова пространства R^n, т. е. минимального числа цветов, в которые можно так раскрасить точки пространства, чтобы точки, отстоящие друг от друга на расстояние 1, оказались раскрашенными в разные цвета. Эта задача до сих пор не решена даже для n=2, т. е. для плоскости, хотя простотой и естественностью своей постановки она сразу привлекла внимание всех математиков. К настоящему времени разработано много интересных и остроумных подходов к её (пока частичному) решению. Текст брошюры представляет собой запись лекции, прочитанной автором 7 декабря 2002 года на Малом мехмате МГУ для школьников 9–11 классов.
  • Смаллиан Рэймонд
    В книге «Алиса в Стране Смекалки» кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок. Они доставят удовольствие всем любителям занимательной математики, а почитателям творчества Льюиса Кэрролла в особенности.
|1|2|3| >>>